-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmise à jour projet
67 lines (45 loc) · 1.46 KB
/
mise à jour projet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import cv2
import numpy as np
import pytesseract
import picamera
from gtts import gTTS
import os
import time
import picamera
from PIL import Image
#with picamera.PiCamera() as camera:
camera.resolution = (1024, 720)
camera.capture(" img.jpg")
print("picture taken.")
img = Image.open('img.jpg')
img.save('img')
time.sleep(1)
def get_string(img_path):
# Read image with opencv
capture = cv2.imread(img_path)
# Convert to gray
#capture = cv2.cvtColor(capture, cv2.COLOR_BGR2GRAY)
# Apply dilation and erosion to remove some noise
#kernel = np.ones((1, 1), np.uint8)
#img = cv2.dilate(img, kernel, iterations=1)
#img = cv2.erode(img, kernel, iterations=1)
# Write image after removed noise
#cv2.imwrite("removed_noise.jpg", img)
# Apply threshold to get image with only black and white
#img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)
# Write the image after apply opencv to do some ...
#cv2.imwrite("capture.jpg", capture)
# Recognize text with tesseract for python
result = pytesseract.image_to_string(Image.open("img.jpg"))
# Remove template file
#os.remove(temp)
return result
time.sleep(5)
print ('--- Start recognize text from image ---')
result1=get_string("img.jpg")
print (result1)
time.sleep(5)
tts = gTTS(text=result1 , lang='en')
tts.save("result.mp3")
os.system("mpg321 result.mp3")
print ("------ Done -------")