-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtext_based_recognition.py
40 lines (27 loc) · 1.02 KB
/
text_based_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import cv2
import numpy as np
import pytesseract
from PIL import Image
def get_string(img_path):
# Read image with opencv
img = cv2.imread(img_path)
# Convert to gray
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# Apply dilation and erosion to remove some noise
kernel = np.ones((1, 1), np.uint8)
img = cv2.dilate(img, kernel, iterations=1)
img = cv2.erode(img, kernel, iterations=1)
# Write image after removed noise
cv2.imwrite("removed_noise.jpg", img)
# Apply threshold to get image with only black and white
#img = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 31, 2)
# Write the image after apply opencv to do some ...
cv2.imwrite("thres.jpg", img)
# Recognize text with tesseract for python
result = pytesseract.image_to_string(Image.open("im1.jpg"))
# Remove template file
#os.remove(temp)
return result
print ('--- Start recognize text from image ---')
print (get_string("im1.jpg"))
print ("------ Done -------")