-
Notifications
You must be signed in to change notification settings - Fork 3
/
refs.bib
1019 lines (895 loc) · 33.2 KB
/
refs.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@inproceedings{lime,
author = {Marco Tulio Ribeiro and
Sameer Singh and
Carlos Guestrin},
title = {{"Why Should {I} Trust You?": Explaining the Predictions of Any Classifier}},
booktitle = {Proceedings of the 22nd {ACM} {SIGKDD} International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, August
13-17, 2016},
pages = {1135--1144},
year = {2016},
url = {https://doi.org/10.18653/v1/n16-3020}
}
@Article{DALEX,
title = {{DALEX: Explainers for Complex Predictive Models in R}},
author = {Przemyslaw Biecek},
journal = {Journal of Machine Learning Research},
year = {2018},
volume = {19},
pages = {1-5},
number = {84},
url = {http://jmlr.org/papers/v19/18-416.html},
}
@incollection{NIPS2017_7062,
title = {{A Unified Approach to Interpreting Model Predictions}},
author = {Lundberg, Scott M and Lee, Su-In},
booktitle = {Advances in Neural Information Processing Systems 30},
editor = {I. Guyon and U. V. Luxburg and S. Bengio and H. Wallach and R. Fergus and S. Vishwanathan and R. Garnett},
pages = {4765--4774},
year = {2017},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf}
}
@article{iBreakDown,
title={{Do Not Trust Additive Explanations}},
author={Alicja Gosiewska and Przemyslaw Biecek},
year={2019},
journal = {arXiv},
eprint={1903.11420},
archivePrefix={arXiv},
primaryClass={cs.LG},
url = {https://arxiv.org/abs/1903.11420v3}
}
@Manual{ingredients,
title = {{ingredients: Effects and Importances of Model Ingredients}},
author = {Przemyslaw Biecek and Hubert Baniecki and Adam Izdebski and Katarzyna Pekala},
year = {2019},
url = {http://CRAN.R-project.org/package=ingredients}
}
@Article{mlr,
title = {{mlr: Machine Learning in R}},
author = {Bernd Bischl and Michel Lang and Lars Kotthoff and Julia Schiffner and Jakob Richter and Erich Studerus and Giuseppe Casalicchio and Zachary M. Jones},
journal = {Journal of Machine Learning Research},
year = {2016},
volume = {17},
number = {170},
pages = {1-5},
url = {http://jmlr.org/papers/v17/15-066.html},
}
@Manual{caret,
title = {{caret: Classification and Regression Training}},
author = {Max Kuhn. Contributions from Jed Wing and Steve Weston and Andre Williams and Chris Keefer and Allan Engelhardt and Tony Cooper and Zachary Mayer and Brenton Kenkel and the R Core Team and Michael Benesty and Reynald Lescarbeau and Andrew Ziem and Luca Scrucca and Yuan Tang and Can Candan and Tyler Hunt.},
year = {2019},
note = {R package version 6.0-84},
url = {https://CRAN.R-project.org/package=caret},
}
@Manual{h2o,
title = {{H2O: Scalable Machine Learning}},
author = {{H2O.ai}},
year = {2015},
note = {version 3.1.0.99999},
url = {http://www.h2o.ai},
}
@article{sklearn,
title={{Scikit-learn: Machine Learning in {P}ython}},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
@article{auditor,
author = {Alicja Gosiewska and Przemysław Biecek},
title = {{auditor: an R Package for Model-Agnostic Visual Validation
and Diagnostics}},
year = {2019},
journal = {{The R Journal}},
url = {https://doi.org/10.32614/RJ-2019-036},
pages = {85--98},
volume = {11},
number = {2}
}
@article{Business,
author = {Leo, Martin and Sharma, Suneel and Maddulety, K.},
year = {2019},
month = {03},
pages = {29},
title = {{Machine Learning in Banking Risk Management: A Literature Review}},
volume = {7},
journal = {Risks},
url = {https://doi.org/10.3390/risks7010029}
}
@Manual{drwhy,
title = {{Collection of tools for Visual Exploration, Explanation and Debugging of Predictive Models}},
author = {Przemyslaw Biecek, MI2DataLab},
year = {2018},
note = {drwhy.ai},
url = {drwhy.ai}
}
@Manual{reticulate,
title = {{reticulate: Interface to 'Python'}},
author = {Kevin Ushey and JJ Allaire and Yuan Tang},
year = {2019},
note = {R package version 1.14},
url = {https://CRAN.R-project.org/package=reticulate},
}
@book{molnar2019,
title = {{Interpretable Machine Learning}},
author = {Christoph Molnar},
note = {\url{https://christophm.github.io/interpretable-ml-book/}},
year = {2019},
subtitle = {A Guide for Making Black Box Models Explainable}
}
@article {Yu3920,
author = {Yu, Bin and Kumbier, Karl},
title = {Veridical data science},
volume = {117},
number = {8},
pages = {3920--3929},
year = {2020},
publisher = {National Academy of Sciences},
issn = {0027-8424},
URL = {https://doi.org/10.1214/aos/1013203451},
eprint = {https://www.pnas.org/content/117/8/3920.full.pdf},
journal = {Proceedings of the National Academy of Sciences}
}
@book{ema,
title = {{Explanatory Model Analysis}},
author = {Przemysław Biecek and Tomasz Burzykowski},
note = {\url{https://pbiecek.github.io/ema}},
year = {2020},
subtitle = {Explore, Explain and Examine Predictive Models}
}
@article{fi,
title={{All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously}},
author={Aaron Fisher and Cynthia Rudin and Francesca Dominici},
year={2018},
journal = {arXiv},
eprint={1801.01489},
archivePrefix={arXiv},
primaryClass={stat.ME},
url = {https://arxiv.org/abs/1801.01489}
}
@ARTICLE{Friedman00greedyfunction,
author = {Jerome H. Friedman},
title = {{Greedy Function Approximation: A Gradient Boosting Machine}},
journal = {Annals of Statistics},
year = {2000},
volume = {29},
pages = {1189--1232},
URL = {https://doi.org/10.1214/aos/1013203451}
}
@article{2016arXiv161208468A,
title={{Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models}},
author={Daniel W. Apley and Jingyu Zhu},
year={2016},
eprint={1612.08468},
journal = {arXiv},
archivePrefix={arXiv},
primaryClass={stat.ME},
url = {https://arxiv.org/abs/1612.08468}
}
@article{XAI,
title = "Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI",
journal = "Information Fusion",
volume = "58",
pages = "82 - 115",
year = "2020",
issn = "1566-2535",
url = "http://www.sciencedirect.com/science/article/pii/S1566253519308103",
author = "Alejandro {Barredo Arrieta} and Natalia Díaz-Rodríguez and Javier {Del Ser} and Adrien Bennetot and Siham Tabik and Alberto Barbado and Salvador Garcia and Sergio Gil-Lopez and Daniel Molina and Richard Benjamins and Raja Chatila and Francisco Herrera",
keywords = "Explainable Artificial Intelligence, Machine Learning, Deep Learning, Data Fusion, Interpretability, Comprehensibility, Transparency, Privacy, Fairness, Accountability, Responsible Artificial Intelligence"}
@article{aix,
author = {Vijay Arya and Rachel K. E. Bellamy and Pin-Yu Chen and Amit Dhurandhar and Michael Hind and Samuel C. Hoffman and Stephanie Houde and Q. Vera Liao and Ronny Luss and Aleksandra Mojsilović and Sami Mourad and Pablo Pedemonte and Ramya Raghavendra and John T. Richards and Prasanna Sattigeri and Karthikeyan Shanmugam and Moninder Singh and Kush R. Varshney and Dennis Wei and Yunfeng Zhang},
title = {AI Explainability 360: An Extensible Toolkit for Understanding Data and Machine Learning Models},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {130},
pages = {1-6},
url = {http://jmlr.org/papers/v21/19-1035.html}
}
@article{interpretml,
title={{InterpretML: A Unified Framework for Machine Learning Interpretability}},
author={Harsha Nori and Samuel Jenkins and Paul Koch and Rich Caruana},
year={2019},
journal={arXiv},
eprint={1909.09223},
archivePrefix={arXiv},
primaryClass={cs.LG},
url = {https://arxiv.org/abs/1909.09223}
}
@incollection{MAPLE,
title = {{Model Agnostic Supervised Local Explanations}},
author = {Plumb, Gregory and Molitor, Denali and Talwalkar, Ameet S},
booktitle = {Advances in Neural Information Processing Systems 31},
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett},
pages = {2515--2524},
year = {2018},
publisher = {Curran Associates, Inc.},
url = {http://papers.nips.cc/paper/7518-model-agnostic-supervised-local-explanations.pdf}
}
@article{doi:10.1177/1473871620904671,
author = {Angelos Chatzimparmpas and Rafael M. Martins and Ilir Jusufi and Andreas Kerren},
title ={{A survey of surveys on the use of visualization for interpreting machine learning models}},
journal = {Information Visualization},
volume = {19},
number = {3},
pages = {207-233},
year = {2020},
URL = {https://doi.org/10.1177/1473871620904671},
eprint = {https://doi.org/10.1177/1473871620904671}
}
@article{LIU201748,
title = "Towards better analysis of machine learning models: A visual analytics perspective",
journal = "Visual Informatics",
volume = "1",
number = "1",
pages = "48 - 56",
year = "2017",
issn = "2468-502X",
url = "https://doi.org/10.1016/j.visinf.2017.01.006",
author = "Shixia Liu and Xiting Wang and Mengchen Liu and Jun Zhu",
}
@article{lu2017recent,
title={Recent progress and trends in predictive visual analytics},
author={Lu, Junhua and Chen, Wei and Ma, Yuxin and Ke, Junming and Li, Zongzhuang and Zhang, Fan and Maciejewski, Ross},
journal={Frontiers of Computer Science},
volume={11},
number={2},
pages={192--207},
year={2017},
publisher={Springer},
URL={http://doi.org/10.1007/s11704-016-6028-y}
}
@article{doi:10.1111/cgf.13210,
author = {Lu, Yafeng and Garcia, Rolando and Hansen, Brett and Gleicher, Michael and Maciejewski, Ross},
title = {{The State-of-the-Art in Predictive Visual Analytics}},
journal = {Computer Graphics Forum},
volume = {36},
number = {3},
pages = {539-562},
url = {https://doi.org/10.1111/cgf.13210},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13210},
year = {2017}
}
@article{Amershi_Cakmak_Knox_Kulesza_2014,
title={{Power to the People: The Role of Humans in Interactive Machine Learning}},
volume={35},
url={http://doi.org/10.1609/aimag.v35i4.2513},
number={4},
journal={AI Magazine},
author={Amershi, Saleema and Cakmak, Maya and Knox, William Bradley and Kulesza, Todd},
year={2014},
month={Dec.},
pages={105-120} }
@article{dudley2018review,
title={A review of user interface design for interactive machine learning},
author={Dudley, John J and Kristensson, Per Ola},
journal={ACM Transactions on Interactive Intelligent Systems (TiiS)},
volume={8},
number={2},
pages={1--37},
year={2018},
publisher={ACM New York, NY, USA},
URL = {https://doi.org/10.1145/3185517}
}
@article{choo2018visual,
title={Visual analytics for explainable deep learning},
author={Choo, Jaegul and Liu, Shixia},
journal={IEEE computer graphics and applications},
volume={38},
number={4},
pages={84--92},
year={2018},
publisher={IEEE},
URL = {http://doi.org/10.1109/MCG.2018.042731661}
}
@article{GARCIA201830,
url = {https://doi.org/10.1016/j.cag.2018.09.018},
year = {2018},
month = dec,
publisher = {Elsevier {BV}},
volume = {77},
pages = {30--49},
author = {Rafael Garcia and Alexandru C. Telea and Bruno Castro da Silva and Jim T{\o}rresen and Jo{\~{a}}o Luiz Dihl Comba},
title = {A task-and-technique centered survey on visual analytics for deep learning model engineering},
journal = {Computers {\&} Graphics}
}rresen and João Luiz [Dihl Comba]}},
}
@article{DBLP:journals/corr/abs-1801-06889,
title={{Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers}},
author={Fred Hohman and Minsuk Kahng and Robert Pienta and Duen Horng Chau},
journal={IEEE Transactions on Visualization and Computer Graphics},
year={2019},
volume={25},
pages={2674-2693},
url={http://doi.org/10.1109/TVCG.2018.2843369}
}
@article{sacha2016visual,
title={{Visual interaction with dimensionality reduction: A structured literature analysis}},
author={Sacha, Dominik and Zhang, Leishi and Sedlmair, Michael and Lee, John A and Peltonen, Jaakko and Weiskopf, Daniel and North, Stephen C and Keim, Daniel A},
journal={IEEE transactions on visualization and computer graphics},
volume={23},
number={1},
pages={241--250},
year={2016},
publisher={IEEE}
}
@Article{pdp,
title = {{pdp: An R Package for Constructing Partial Dependence Plots}},
author = {Brandon M. Greenwell},
journal = {The R Journal},
year = {2017},
volume = {9},
number = {1},
pages = {421--436},
url = {http://doi.org/10.32614/RJ-2017-016},
}
@Manual{limeR,
title = {{lime: Local Interpretable Model-Agnostic Explanations}},
author = {Thomas Lin Pedersen and Michaël Benesty},
year = {2019},
note = {R package version 0.5.1},
url = {https://CRAN.R-project.org/package=lime},
}
@misc{PatrickHall,
author = {Patrick Hall},
title = {awesome-machine-learning-interpretability},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/jphall663/awesome-machine-learning-interpretability}},
note = {Access: 2020-07-01}
}
@inproceedings{10.1145/2783258.2788613,
author = {Caruana, Rich and Lou, Yin and Gehrke, Johannes and Koch, Paul and Sturm, Marc and Elhadad, Noemie},
title = {{Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-Day Readmission}},
year = {2015},
isbn = {9781450336642},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/2783258.2788613},
booktitle = {Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining},
pages = {1721–1730},
numpages = {10},
keywords = {intelligibility, additive models, risk prediction, healthcare, interaction detection, logistic regression, classification},
location = {Sydney, NSW, Australia},
series = {KDD ’15}
}
@misc{eli5,
author = {Mikhail Korobov and Konstantin Lopuhin},
title = {{ELI5}},
year = {2020},
howpublished = {\url{https://eli5.readthedocs.io/en/latest/index.html}},
note = {Accessed: 2020-07-21}
}
@book{hall2018introduction,
title={{An Introduction to Machine Learning Interpretability: An Applied Perspective on Fairness, Accountability, Transparency, and Explainable AI}},
author={Hall, P. and Gill, N.},
isbn={9781492033141},
url={https://books.google.pl/books?id=vilpuwEACAAJ},
year={2018},
publisher={O'Reilly Media}
}
@article{hall2018art,
title={{On the Art and Science of Machine Learning Explanations}},
author={Patrick Hall},
year={2018},
journal = {arXiv},
eprint={1810.02909},
archivePrefix={arXiv},
primaryClass={stat.ML},
url = {https://arxiv.org/abs/1810.02909}
}
@article{RJ-2018-072,
author = {Mateusz Staniak and Przemysław Biecek},
title = {{Explanations of Model Predictions with live and breakDown
Packages}},
year = {2018},
journal = {{The R Journal}},
url = {https://doi.org/10.32614/RJ-2018-072},
pages = {395--409},
volume = {10},
number = {2}
}
@inproceedings{XAItaxonomies,
title = {{Explaining Explanations: An Overview of Interpretability of Machine Learning}},
author = {Gilpin, Leilani and Bau, David and Yuan, Ben and Bajwa, Ayesha and Specter, Michael and Kagal, Lalana},
year = {2018},
month = {10},
pages = {80-89},
url = {https://doi.org/10.1109/DSAA.2018.00018}
}
@inproceedings{biran2017explanation,
title={{Explanation and justification in machine learning: A survey}},
author={Biran, Or and Cotton, Courtenay},
booktitle={IJCAI-17 workshop on explainable AI (XAI)},
volume={8},
number={1},
pages={8--13},
year={2017}
}
@Article{titanic,
title = {{Measuring the Stability of Results from Supervised
Statistical Learning}},
author = {Michel Philipp and Thomas Rusch and Kurt Hornik and
Carolin Strobl},
journal = {Journal of Computational and Graphical Statistics},
volume = {27},
number = {4},
pages = {685--700},
year = {2018},
url = {https://doi.org/10.1080/10618600.2018.1473779},
}
@Article{med1,
author = {Nature},
title={Ascent of machine learning in medicine},
journal={Nature Materials},
year={2019},
month={May},
day={01},
volume={18},
number={5},
pages={407-407},
abstract={Machine learning is swiftly infiltrating many areas within the healthcare industry, from diagnosis and prognosis to drug development and epidemiology, with significant potential to transform the medical landscape.},
issn={1476-4660},
url={https://doi.org/10.1038/s41563-019-0360-1}
}
@article{med2,
author = {Obermeyer, Ziad and Emanuel, Ezekiel J.},
title = {{Predicting the Future — Big Data, Machine Learning, and Clinical Medicine}},
journal = {New England Journal of Medicine},
volume = {375},
number = {13},
pages = {1216-1219},
year = {2016},
note ={PMID: 27682033},
URL = {https://doi.org/10.1056/NEJMp1606181},
eprint = { https://doi.org/10.1056/NEJMp1606181}
}
@Article{iml,
author = {Christoph Molnar and Bernd Bischl and Giuseppe Casalicchio},
title = {{iml: An R package for Interpretable Machine Learning}},
url = {http://doi.org/10.21105/joss.00786},
year = {2018},
publisher = {Journal of Open Source Software},
volume = {3},
number = {26},
pages = {786},
journal = {JOSS},
}
@Manual{DALEXtra,
title = {{DALEXtra: Extension for 'DALEX' Package}},
author = {Szymon Maksymiuk and Przemyslaw Biecek},
year = {2020},
note = {R package version 2.0.0},
url = {https://CRAN.R-project.org/package=DALEXtra},
}
@Manual{deepdep,
title = {{deepdep: Visualise and Explore the Deep Dependencies of R Packages}},
author = {Dominik Rafacz and Hubert Baniecki and Szymon Maksymiuk and Mateusz Bakala},
year = {2020},
note = {R package version 0.2.1},
url = {https://CRAN.R-project.org/package=deepdep},
}
@article{loco,
author = {Jing Lei and Max G’Sell and Alessandro Rinaldo and Ryan J. Tibshirani and Larry Wasserman},
title = {{Distribution-Free Predictive Inference for Regression}},
journal = {Journal of the American Statistical Association},
volume = {113},
number = {523},
pages = {1094-1111},
year = {2018},
publisher = {Taylor & Francis},
URL = {https://doi.org/10.1080/01621459.2017.1307116},
eprint = { https://doi.org/10.1080/01621459.2017.1307116}
}
@article{ICE,
author = {Alex Goldstein and Adam Kapelner and Justin Bleich and Emil Pitkin},
title = {{Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation}},
journal = {Journal of Computational and Graphical Statistics},
volume = {24},
number = {1},
pages = {44-65},
year = {2015},
publisher = {Taylor & Francis},
URL = { https://doi.org/10.1080/10618600.2014.907095},
eprint = {https://doi.org/10.1080/10618600.2014.907095}
}
@Manual{ALEPlot,
title = {{ALEPlot: Accumulated Local Effects (ALE) Plots and Partial Dependence
(PD) Plots}},
author = {Dan Apley},
year = {2018},
note = {R package version 1.1},
url = {https://CRAN.R-project.org/package=ALEPlot},
}
@Manual{EIX,
title = {{EIX: Explain Interactions in 'XGBoost'}},
author = {Ewelina Karbowiak and Przemyslaw Biecek},
year = {2020},
note = {R package version 1.1},
url = {https://CRAN.R-project.org/package=EIX},
}
@Manual{ExplainPrediction,
title = {{ExplainPrediction: Explanation of Predictions for Classification and Regression
Models}},
author = {Marko Robnik-Sikonja},
year = {2018},
note = {R package version 1.3.0},
url = {https://CRAN.R-project.org/package=ExplainPrediction},
}
@Manual{fairness,
title = {{fairness: Algorithmic Fairness Metrics}},
author = {Nikita Kozodoi and Tibor {V. Varga}},
year = {2020},
note = {R package version 1.1.1},
url = {https://CRAN.R-project.org/package=fairness},
}
@Manual{fastshap,
title = {{fastshap: Fast Approximate Shapley Values}},
author = {Brandon Greenwell},
year = {2020},
note = {R package version 0.0.5},
url = {https://CRAN.R-project.org/package=fastshap},
}
@Manual{flashlight,
title = {{flashlight: Shed Light on Black Box Machine Learning Models}},
author = {Michael Mayer},
year = {2020},
note = {R package version 0.7.0},
url = {https://CRAN.R-project.org/package=flashlight},
}
@Manual{forestmodel,
title = {{forestmodel: Forest Plots from Regression Models}},
author = {Nick Kennedy},
year = {2020},
note = {R package version 0.6.2},
url = {https://CRAN.R-project.org/package=forestmodel},
}
@Article{fscaret,
title = {{Heuristic modeling of macromolecule release from PLGA microspheres.}},
author = {Jakub Szlek and Paclawski Adam and Lau Raymond and Jachowicz Renata and Mendyk Aleksander},
year = {2013},
note = {R package version 0.8.5.3},
journal = {International Journal of Nanomedicine},
volume = {8},
number = {1},
pages = {4601-4611},
URL = {http://doi.org/10.2147/IJN.S53364}
}
@Manual{lime-pkg,
title = {{lime: Local Interpretable Model-Agnostic Explanations}},
author = {Thomas Lin Pedersen and Michaël Benesty},
year = {2019},
note = {R package version 0.5.1},
url = {https://CRAN.R-project.org/package=lime},
}
@Manual{mcr,
title = {{mcr: Method Comparison Regression}},
author = {Ekaterina Manuilova and Andre Schuetzenmeister and Fabian Model},
year = {2014},
note = {R package version 1.2.1},
url = {https://CRAN.R-project.org/package=mcr},
}
@article{modelDown,
doi = {10.21105/joss.01444},
url = {https://doi.org/10.21105/joss.01444},
year = {2019},
publisher = {The Open Journal},
volume = {4},
number = {38},
pages = {1444},
author = {Kamil Romaszko and Magda Tatarynowicz and Mateusz Urbański and Przemysław Biecek},
title = {{modelDown: automated website generator with interpretable documentation for predictive machine learning models}},
journal = {Journal of Open Source Software}
}
@Article{modelStudio,
author = {Hubert Baniecki and Przemyslaw Biecek},
title = {{{modelStudio}: Interactive Studio with Explanations for {ML} Predictive Models}},
url = {https://doi.org/10.21105/joss.01798},
year = {2019},
month = {Nov},
volume = {4},
number = {43},
pages = {1798},
publisher = {The Open Journal},
journal = {Journal of Open Source Software},
}
@Manual{randomForestExplainer,
title = {{randomForestExplainer: Explaining and Visualizing Random Forests in Terms of Variable
Importance}},
author = {Aleksandra Paluszynska and Przemyslaw Biecek and Yue Jiang},
year = {2020},
note = {R package version 0.10.1},
url = {https://CRAN.R-project.org/package=randomForestExplainer},
}
@Manual{shapper,
title = {{shapper: Wrapper of Python Library 'shap'}},
author = {Szymon Maksymiuk and Alicja Gosiewska and Przemyslaw Biecek},
year = {2019},
note = {R package version 0.1.2},
url = {https://CRAN.R-project.org/package=shapper},
}
@misc{skater,
author = {{Oracle and contributors}},
title = {skater},
year = {2020},
version = {1.1.2b1},
url= {https://github.com/datascienceinc/skater/}
}
@Manual{smbinning,
title = {{smbinning: Scoring Modeling and Optimal Binning}},
author = {Herman Jopia},
year = {2019},
note = {R package version 0.9},
url = {https://CRAN.R-project.org/package=smbinning},
}
@article{survxai,
doi = {10.21105/joss.00961},
url = {https://doi.org/10.21105/joss.00961},
year = {2018},
publisher = {The Open Journal},
volume = {3},
number = {31},
pages = {961},
author = {Aleksandra Grudziaz and Alicja Gosiewska and Przemyslaw Biecek},
title = {{survxai: an R package for structure-agnostic explanations of survival models}},
journal = {Journal of Open Source Software}
}
@Manual{vip,
title = {{vip: Variable Importance Plots}},
author = {Brandon Greenwell and Brad Boehmke and Bernie Gray},
year = {2020},
note = {R package version 0.2.2},
url = {https://CRAN.R-project.org/package=vip},
}
@Manual{vivo,
title = {{vivo: Variable Importance via Oscillations}},
author = {Anna Kozak and Przemyslaw Biecek},
year = {2020},
note = {R package version 0.2.0},
url = {https://CRAN.R-project.org/package=vivo},
}
@article{breiman2001statistical,
author = "Breiman, Leo",
doi = "10.1214/ss/1009213726",
fjournal = "Statistical Science",
journal = "Statist. Sci.",
month = "08",
number = "3",
pages = "199--231",
publisher = "The Institute of Mathematical Statistics",
title = "Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author)",
url = "https://doi.org/10.1214/ss/1009213726",
volume = "16",
year = "2001"
}
@Manual{corrgrapher,
title = {{corrgrapher: Explore Correlations Between Variables in a Machine Learning Model}},
author = {Pawel Morgen and Przemyslaw Biecek},
year = {2020},
note = {R package version 1.0.2},
url = {https://CRAN.R-project.org/package=corrgrapher},
}
@Manual{triplot,
title = {{triplot: Explaining Correlated Features in Machine Learning Models}},
author = {Katarzyna Pekala and Przemyslaw Biecek},
year = {2020},
note = {R package version 1.3.0},
url = {https://CRAN.R-project.org/package=triplot},
}
@article{shapr,
url = {https://doi.org/10.21105/joss.02027},
year = {2019},
publisher = {The Open Journal},
volume = {5},
number = {46},
pages = {2027},
author = {Nikolai Sellereite and Martin Jullum},
title = {{shapr: An R-package for explaining machine learning models with dependence-aware Shapley values}},
journal = {Journal of Open Source Software}
}
@Manual{fairmodels,
title = {{fairmodels: Flexible Tool for Bias Detection, Visualization, and Mitigation}},
author = {Jakub Wiśniewski and Przemysław Biecek},
year = {2020},
note = {R package version 0.1.1},
url = {https://CRAN.R-project.org/package=fairmodels},
}
@Manual{aif360,
title = {{aif360: Help Detect and Mitigate Bias in Machine Learning Models}},
author = {Gabriela {de Queiroz} and Stacey Ronaghan and Saishruthi Swaminathan},
year = {2020},
note = {R package version 0.1.0},
url = {https://CRAN.R-project.org/package=aif360},
}
@Manual{fairml,
title = {{fairml: Fair Models in Machine Learning}},
author = {Marco Scutari},
year = {2020},
note = {R package version 0.2},
url = {https://CRAN.R-project.org/package=fairml},
}
@Manual{arenar,
title = {{arenar: Arena for the Exploration and Comparison of any ML Models}},
author = {Piotr Piątyszek and Przemyslaw Biecek},
year = {2020},
note = {R package version 0.1.8},
url = {https://CRAN.R-project.org/package=arenar},
}
@Article{glmnet,
title = {{Regularization Paths for Generalized Linear Models via
Coordinate Descent}},
author = {Jerome Friedman and Trevor Hastie and Robert Tibshirani},
journal = {Journal of Statistical Software},
year = {2010},
volume = {33},
number = {1},
pages = {1--22},
url = {https://doi.org/10.18637/jss.v033.i01},
}
@Manual{naivebayes,
title = {{naivebayes: High Performance Implementation of the Naive Bayes Algorithm in R}},
author = {Michal Majka},
year = {2019},
note = {R package version 0.9.7},
url = {https://CRAN.R-project.org/package=naivebayes},
}
@Manual{kknn,
title = {{kknn: Weighted k-Nearest Neighbors}},
author = {Klaus Schliep and Klaus Hechenbichler},
year = {2016},
note = {R package version 1.3.1},
url = {https://CRAN.R-project.org/package=kknn},
}
@Article{partyctree,
title = {{Unbiased Recursive Partitioning: A Conditional Inference
Framework}},
author = {Torsten Hothorn and Kurt Hornik and Achim Zeileis},
journal = {Journal of Computational and Graphical Statistics},
year = {2006},
volume = {15},
number = {3},
pages = {651--674},
URL = {http://doi.org/10.1198/106186006X133933}
}
@Book{knn,
title = {{Modern Applied Statistics with S}},
author = {W. N. Venables and B. D. Ripley},
publisher = {Springer},
edition = {Fourth},
address = {New York},
year = {2002},
note = {ISBN 0-387-95457-0},
url = {http://www.stats.ox.ac.uk/pub/MASS4},
}
@Article{arules,
title = {{The arules R-Package Ecosystem: Analyzing Interesting
Patterns from Large Transaction Datasets}},
author = {Michael Hahsler and Sudheer Chelluboina and Kurt Hornik
and Christian Buchta},
year = {2011},
journal = {Journal of Machine Learning Research},
volume = {12},
pages = {1977--1981},
url = {http://jmlr.csail.mit.edu/papers/v12/hahsler11a.html},
}
@article{arulescba,
author = {Michael Hahsler and Ian Johnson and Tomáš Kliegr and
Jaroslav Kuchař},
title = {{Associative Classification in R: arc, arulesCBA, and rCBA}},
year = {2019},
journal = {{The R Journal}},
doi = {10.32614/RJ-2019-048},
url = {https://doi.org/10.32614/RJ-2019-048},
pages = {254--267},
volume = {11},
number = {2}
}
@article{arulesviz,
author = {Michael Hahsler},
title = {{arulesViz: Interactive Visualization of Association Rules
with R}},
year = {2017},
journal = {{The R Journal}},
doi = {10.32614/RJ-2017-047},
url = {https://doi.org/10.32614/RJ-2017-047},
pages = {163--175},
volume = {9},
number = {2}
}
@misc{rashomon,
author = {Wikipedia},
title = {Rashomon effect},
year = {2020},
url = {https://en.wikipedia.org/wiki/Rashomon_effect},
note = {Online; accessed 22-09-2020}
}
@article{mlr3,
url = {https://doi.org/10.21105/joss.01903},
year = {2019},
publisher = {The Open Journal},
volume = {4},
number = {44},
pages = {1903},
author = {Michel Lang and Martin Binder and Jakob Richter and Patrick Schratz and Florian Pfisterer and Stefan Coors and Quay Au and Giuseppe Casalicchio and Lars Kotthoff and Bernd Bischl},
title = {mlr3: A modern object-oriented machine learning framework in R},
journal = {Journal of Open Source Software}
}
@Manual{tidymodels,
title = {{Tidymodels: a collection of packages for modeling and
machine learning using tidyverse principles.}},
author = {Max Kuhn and Hadley Wickham},
url = {https://www.tidymodels.org},
year = {2020},
}
@Manual{darpa,
title = {{Explainable Artificial Intelligence (XAI)}},
author = {David Gunning},
url = {https://www.darpa.mil/attachments/XAIProgramUpdate.pdf},
year = {2017},
bote = {DARPA/I2O}
}
@article{responsibleml,
title={{A Responsible Machine Learning Workflow with Focus on Interpretable Models, Post-hoc Explanation, and Discrimination Testing}},
author={Gill, Navdeep and Hall, Patrick and Montgomery, Kim and Schmidt, Nicholas},
journal={Information},
volume={11},
number={3},
pages={137},
year={2020},
publisher={Multidisciplinary Digital Publishing Institute},
URL = {http://doi.org/10.3390/info11030137}
}
@misc{keras,
title={{Keras}},
author={Chollet, Fran\c{c}ois and others},
year={2015},
howpublished={\url{https://keras.io}},
}
@incollection{pytorch,
title = {{PyTorch: An Imperative Style, High-Performance Deep Learning Library}},
author = {Paszke, Adam and Gross, Sam and Massa, Francisco and Lerer, Adam and Bradbury, James and Chanan, Gregory and Killeen, Trevor and Lin, Zeming and Gimelshein, Natalia and Antiga, Luca and Desmaison, Alban and Kopf, Andreas and Yang, Edward and DeVito, Zachary and Raison, Martin and Tejani, Alykhan and Chilamkurthy, Sasank and Steiner, Benoit and Fang, Lu and Bai, Junjie and Chintala, Soumith},
booktitle = {Advances in Neural Information Processing Systems 32},
editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
pages = {8024--8035},
year = {2019},
publisher = {Curran Associates, Inc.},
url = {http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf}
}
@article{Goodman_Flaxman_2017,
title = {European Union Regulations on Algorithmic Decision-Making and a “Right to Explanation”},
volume = {38},
url = {http://doi.org/10.1609/aimag.v38i3.2741},
number = {3},
journal = {AI Magazine},
author = {Goodman, Bryce and Flaxman, Seth},
year = {2017},
month = {Oct.},
pages = {50-57}
}
@Manual{treeshap,
title = {treeshap: Fast shap values computations for ensamble models},
author = {Konrad Komisarczyk and Pawel Kozminski and Przemyslaw Biecek},
year = {2020},