-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPhD-Thesis_mainmatter.tex
68 lines (55 loc) · 2.85 KB
/
PhD-Thesis_mainmatter.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
% ************ Mainmatter ************ %
\mainmatter
% ****** Introduction ****** %
\chapter{Introduction}\label{chap:introduction}\IMRADlabel{introduction}
\input{introduction/introduction}
% ****** Theoretical background and methods ****** %
\chapter{Theoretical background and methods}\label{chap:methods}\IMRADlabel{methods}
In this chapter we introduce the theoretical background and the methods used throughout this work.
In \cref{sec:FRG} we begin with a discussion and summary of the key concepts of the \frg{}\footnote{%
Sometimes also referred to as \erg{} due to the fact that its central \rg{} evolution equation, \viz{} the \frgEq{}, is formally an exact equation.
This is in contrast to earlier non-perturbative \rg{} evolution equations, which often times included approximations.%
}, which we use as the main theoretical frame work to compute observables for the models and theories studied in this thesis.
The central equations of the \frg{} framework manifest as flow (conservation) equations, which we will discuss in general in \cref{sec:conservationLaws} with a special focus on \cfd{}.
In the subsequent \cref{sec:qcdModels} we give a brief introduction of \qcd{} as the fundamental theory of the strong interaction, which includes a discussion of \loefts{} and their emergence from \qcd{} in the \frg{} framework.
We conclude this chapter with \cref{sec:inhomogeneousPhases}, where we provide a concise introduction to inhomogeneous phases (condensates), focusing on computational challenges, employed methods, and selected literature results.
\input{frg/frg}
\input{hydro/hydro}
\input{qcd/qcd}
\input{inhomo/inhomo}
% ****** Models in zero dimensions ****** %
\chapter{Models in zero dimensions}\label{chap:zeroONSU2}\IMRADlabel{results}
\input{0d/0dintro}
\input{0d/0dqft}
\input{0d/0dON}
\input{0d/0dsu2model}
\input{0d/0dconclusion}
% ****** Gross-Neveu model in two dimensions ****** %
\chapter{Gross-Neveu model in two dimensions}\label{chap:GN}
\input{gn/GNintro}
\input{gn/gny}
\input{gn/gnyFRG}
\input{gn/gnInfNhomo}
\input{gn/gnInfNinhomo}
\input{gn/gnFiniteN}
\input{gn/gnConclusion}
% ****** Quark meson model in four dimensions ****** %
\chapter{Quark meson model in four dimensions}\label{chap:QMM}
\input{qmm/qmm}
% ****** Summary ****** %
\chapter{Summary and outlook}\label{chap:conclusion}\IMRADlabel{discussion}
\input{conclusion}
% ************ Appendices ************ %
\part*{Appendices}\label{app:app}
\appendix
\chapter{Digital auxiliary files and used software}
\input{appendix/auxFiles}
\input{appendix/software}
\chapter{Units, conventions, and notations}\label{app:conventions}%
\input{appendix/conventions}
\chapter{Thermal quantum field theory}\label{app:thermalQFT}
\input{appendix/thermalQFT}
\chapter{Models in zero dimensions}\label{app:zerod}
\input{appendix/zerod}
\chapter{Gross-Neveu model in two dimensions}\label{app:gn}
\input{appendix/gnApp}