-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset_ops.py
270 lines (204 loc) · 10.4 KB
/
dataset_ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import os
import re
from collections import defaultdict
from pathlib import Path
from typing import List, Optional, Tuple
import numpy as np
import pandas as pd
import tensorflow as tf
try:
from tqdm import notebook as tqdm
except ImportError:
tqdm = None
class TestsManager(object):
state_cols = []
def __init__(self, dataset_dir='./h5', runs_filename='runs.hdf'):
if not isinstance(dataset_dir, Path):
dataset_dir = Path(str(dataset_dir))
if not isinstance(runs_filename, Path):
runs_filename = Path(str(runs_filename))
self.dataset_dir = dataset_dir
self.runs_filename = runs_filename
self.test_data_cache = dict()
self.unique_states = defaultdict(self.count_states)
self._signal_targets_prefetched = None
def count_states(self):
return len(self.unique_states)
def _state_ids(self, df: pd.DataFrame):
df = df[self.state_cols]
change_locations = (df != df.shift()).apply(lambda x: np.logical_or.reduce(x.to_numpy()), axis=1)
# change_locations = np.squeeze(np.where(change_locations))
# change_locations = np.delete(change_locations, np.where(change_locations==0))
# self.unique_states = defaultdict(lambda *_: len(self.unique_states))
return df.loc[change_locations].apply(lambda row: self.unique_states[tuple(x[1] for x in sorted(row.items()))],
axis=1)
# return changeLocations
def _generate_signals_targets(self, selected_runs: pd.DataFrame, *, features: List[str],
max_length: Optional[int] = None):
runs_iter = selected_runs.iterrows()
if tqdm:
runs_iter = tqdm.tqdm(runs_iter, total=selected_runs.shape[0])
for tid, run in runs_iter:
tdata, _ = self.read_test_data(tid, run)
signals = tdata[[*features]]
targets = tdata['state_id']
if max_length is not None and signals.shape[0] > max_length:
signals = signals.iloc[:max_length]
targets = targets.iloc[:max_length]
yield tid, signals, targets
def preload_data(self, selected_runs: pd.DataFrame, *, features: List[str], max_length: Optional[int] = None):
if self._signal_targets_prefetched is None:
print("Loading data", end='...')
self._signal_targets_prefetched = [
*self._generate_signals_targets(selected_runs, features=features, max_length=max_length)]
print("done")
return self._signal_targets_prefetched
def iterate(self):
assert self._signal_targets_prefetched is not None, "Fetch the data first"
return self._signal_targets_prefetched
def get_all_available_tests(self):
raise NotImplementedError()
def read_test_data(self, tid, run):
raise NotImplementedError()
class MicroPilotTestsManager(TestsManager):
state_cols = ['Laileron', 'Lelevator', 'Lflap', 'Lrudder', 'Lthrottle']
def __init__(self, dataset_dir='./h5', runs_filename='runs.hdf'):
super(MicroPilotTestsManager, self).__init__(dataset_dir, runs_filename)
self.commands = pd.read_csv('COMMANDS.csv', header=None, index_col=1, names=['name'])
self._signal_targets_prefetched = None
def get_all_available_tests(self):
if os.path.exists(self.runs_filename):
return pd.read_hdf(self.runs_filename, 'runs')
all_runs = []
for name in os.listdir(self.dataset_dir):
if name[-3:] != '.h5':
continue
testid, planeid = name[:-3].split('_', 2)
tdata, states = self.read_test_data({'Test ID': testid, 'PlaneId': planeid})
n, m = tdata.shape[0], tdata.index.max()
if n != m:
print(f'panic for test {testid}, n={n}, m={m}, missing={set(range(1, m)) - set(tdata.index)}')
all_runs.append((testid, planeid, n))
all_runs = pd.DataFrame(all_runs, columns=('Test ID', 'PlaneId', 'Test Length'))
all_runs.to_hdf(self.runs_filename, 'runs')
return all_runs
def read_test_data(self, _, run):
testid, planeid = run['Test ID'], run['PlaneId']
if (testid, planeid) not in self.test_data_cache:
tdata: pd.DataFrame = pd.read_hdf(f'{self.dataset_dir}/{testid}_{planeid}.h5',
key=f'TestData_{testid}_{planeid}')
tdata['state_id'] = np.nan
maxT = tdata.index.max()
states = self._state_ids(tdata)
nice_to_remove = {t1 for t1, t2 in zip(states.index, states.index[1:]) if t2 - t1 < 5}
states.drop(nice_to_remove, axis=0, inplace=True)
tdata['state_id'] = states.iloc[0]
for (t1, s1), t2 in zip(states.items(), states.index[1:]):
tdata.loc[t1:t2, 'state_id'] = s1
t1, t2, s1 = states.iloc[[-1]].index[0], maxT, states.iloc[-1]
tdata.loc[t1:t2, 'state_id'] = s1
self.test_data_cache[(testid, planeid)] = tdata, states
return self.test_data_cache[(testid, planeid)]
def command_names(self, df: pd.DataFrame):
return df['currentCommandId'].apply(lambda cid: self.commands.loc[cid])
class PaparazziTestManager(TestsManager):
state_cols = ['ap_gaz', 'ap_lateral', 'ap_horizontal', 'v_ctl_auto_throttle_submode', 'v_ctl_climb_mode',
'h_ctl_pitch_mode', 'nav_mode']
def __init__(self, dataset_dir='./pprz_h5', runs_filename='pprz_runs.hdf'):
super(PaparazziTestManager, self).__init__(dataset_dir, runs_filename)
def get_all_available_tests(self):
run_file = self.runs_filename
if run_file.exists():
return pd.read_hdf(run_file, 'runs')
test_number = re.compile(r'test_(\d+)\.h5')
test_lengths = []
directory = Path(__file__).parent / 'pprz_h5'
for file in directory.iterdir():
if not file.is_file() or file.suffix != '.h5':
continue
idx = int(re.findall(test_number, file.name)[0])
try:
df = pd.read_hdf(file)
test_lengths.append((idx, df.shape[0]))
del df
except:
print(file) # TODO: jesus! I look like a CS101 student here.
test_lengths_df = (pd.DataFrame(test_lengths, dtype='int32', columns=['idx', 'Test Length'])
.set_index('idx', drop=True)
.sort_index())
test_lengths_df.to_hdf(run_file, key='runs')
return test_lengths_df
def read_test_data(self, run_id, _):
if run_id not in self.test_data_cache:
tdata: pd.DataFrame = pd.read_hdf(self.dataset_dir / f'test_{run_id}.h5') # noqa: it's going to be a df
tdata['state_id'] = np.nan
max_t = tdata.index.max()
states = self._state_ids(tdata)
nice_to_remove = {t1 for t1, t2 in zip(states.index, states.index[1:]) if t2 - t1 < 5}
states.drop(nice_to_remove, axis=0, inplace=True)
tdata['state_id'] = states.iloc[0]
for (t1, s1), t2 in zip(states.items(), states.index[1:]):
tdata.loc[t1:t2, 'state_id'] = s1
t1, t2, s1 = states.iloc[[-1]].index[0], max_t, states.iloc[-1]
tdata.loc[t1:t2, 'state_id'] = s1
self.test_data_cache[run_id] = tdata, states
return self.test_data_cache[run_id]
class TensorflowDataset:
def __init__(self, dataset_manager: TestsManager):
self.dataset_manager = dataset_manager
def _create_padded_generator(self, selected_runs: pd.DataFrame, *, features: List[str], max_length: int):
self.dataset_manager.preload_data(selected_runs, max_length=max_length, features=features)
N_s = self.dataset_manager.count_states()
def _gen():
for tid, signals, targets in self.dataset_manager.iterate():
s = tf.convert_to_tensor(signals.to_numpy(), dtype='float32')
t = tf.one_hot(targets.to_numpy(), depth=N_s)
length = s.shape[0]
mask = tf.fill((length, 1), True)
pad_size = max_length - length
paddings = tf.constant([[0, pad_size], [0, 0]])
s = tf.pad(s, paddings, 'CONSTANT')
t = tf.pad(t, paddings, 'CONSTANT')
mask = tf.pad(mask, paddings, 'CONSTANT', constant_values=False)
yield {'signals': s, 'mask': mask}, t
return _gen
def get_dataset(self, selected_runs: pd.DataFrame, *, features: List[str], max_length: int) -> tf.data.Dataset:
ds = tf.data.Dataset.from_generator(
self._create_padded_generator(selected_runs, features=features, max_length=max_length),
output_types=({'signals': tf.float32, 'mask': tf.float32}, tf.float32),
output_shapes=({
'signals': tf.TensorShape([max_length, len(features)]),
'mask': tf.TensorShape([max_length, 1])
},
tf.TensorShape([max_length, self.dataset_manager.count_states()])),
)
return ds
def split_dataset(ds, split_proportion: Tuple[int, int, int]):
def get_second(_, x):
return x
limits = [0]
for p in split_proportion:
limits.append(limits[-1] + p)
def make_sieve(idx):
lower, upper, total = limits[idx], limits[idx + 1], limits[-1]
def _sieve(index, _):
r = index % total
return (lower <= r) and (r < upper)
return tf.function(_sieve)
return tuple(
ds.enumerate().filter(make_sieve(idx)).map(get_second)
for idx in range(len(split_proportion))
)
def load_and_split(dataset_manager, selected_runs, features, split_ratio, batch_size, max_length=None):
if not max_length:
max_length = selected_runs['Test Length'].max()
tfdataset = TensorflowDataset(dataset_manager)
ds = tfdataset.get_dataset(selected_runs, features=features, max_length=max_length)
train_dataset, test_dataset, validation_dataset = split_dataset(ds, split_proportion=split_ratio)
train_dataset, test_dataset, validation_dataset = (
dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
.batch(batch_size)
.shuffle(buffer_size=15)
for dataset in (train_dataset, test_dataset, validation_dataset)
)
return ds, train_dataset, test_dataset, validation_dataset