We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
您好,感谢您的开源🙏。 我按照您的 requirements 配制了环境 torch==1.7.1+cu110、stanza==1.5.1,但是在运行 data_prepro_getGraph.py 代码会报错 UnboundLocalError: local variable 'doc' referenced before assignment, 且其原因是Exception: module 'torch' has no attribute 'take_along_dim'。请问应该如何解决?
UnboundLocalError: local variable 'doc' referenced before assignment
Exception: module 'torch' has no attribute 'take_along_dim'
torch.take_along_dim 方法似乎是在 PyTorch 1.10.0 的版本中才引入的? 我是需要更换 PyTorch 的版本么?还是更换 stanza 的版本?
def get_dependency(tokens): nlp = stanza.Pipeline(lang='en', processors='tokenize,mwt,pos,lemma,depparse,constituency', tokenize_pretokenized=True, dir='/path/to/stanza_resources', download_method=None) result = [] result2 = [] POS = [] Pre_head = [] for idx,token in enumerate(tokens): # sente =' '.join(['Pairing', 'it', 'with', 'an', 'iPhone', 'is', 'a', 'pure', 'pleasure', '-', 'talk', 'about', 'painless', 'syncing', '-', 'used', 'to', 'take', 'me', 'forever', '-', 'now', 'it', "'s", 'a', 'snap', '.']) # sente =' '.join(['she', 'is', 'a', 'beautiful', 'woman','.']) # sente = "It is really easy to use and it is quick to start up ." # sente = "great food but the service was dreadful!" sente = ' '.join(token) # if idx==627: # print(idx) # token_list= ['The', 'wait', 'staff', 'is', 'pleasant', ',', 'fun', ',', 'and', 'for', 'the', 'most', 'part', 'gorgeous', '(', 'in', 'the', 'wonderful', 'aesthetic', 'beautification', 'way', ',', 'not', 'in', 'that', "she's-way-cuter-than-me-that-b", '@', ''] # token_dicts = [{'id': str(i + 1), 'text': token} for i, token in enumerate(token)] try: doc = nlp(sente) except Exception as e: print(f"Error processing sentence at index {idx}: {token}") print(f"Exception: {e}") # break # 获取第一个句子的依存分析结果 sent = doc.sentences dependencies = sent[0].dependencies dd = [] pos = [] for dependency in dependencies: this_word = dependency[2] token_id = this_word.id token_head_id = this_word.head token_dependency_label = this_word.deprel # 将依存关系转换成['root',1,2]形式 if token_head_id == 0: dd.append(['root', token_head_id,token_id]) else: dd.append([token_dependency_label, token_head_id, token_id]) pos.append(this_word.pos) result.append(dd) dd2 = [""+e[0] for e in dd] POS.append(pos) result2.append(dd2) prehead = [e[1] for e in dd] Pre_head.append(prehead) return result2,result,POS,Pre_head
2024-12-26 12:40:24 WARNING: Can not find mwt: default from official model list. Ignoring it. 2024-12-26 12:40:24 INFO: Loading these models for language: en (English): ====================================== | Processor | Package | -------------------------------------- | tokenize | combined | | pos | combined_charlm | | lemma | combined_nocharlm | | constituency | ptb3-revised_charlm | | depparse | combined_charlm | ====================================== 2024-12-26 12:40:24 INFO: Using device: cuda 2024-12-26 12:40:24 INFO: Loading: tokenize 2024-12-26 12:40:24 INFO: Loading: pos 2024-12-26 12:40:28 INFO: Loading: lemma 2024-12-26 12:40:28 INFO: Loading: constituency 2024-12-26 12:40:29 INFO: Loading: depparse 2024-12-26 12:40:29 INFO: Done loading processors! Error processing sentence at index 0: ['first', 'one', 'that', 'they', 'shipped', 'was', 'obviously', 'defective', ',', 'super', 'slow', 'and', 'speakers', 'were', 'garbled', '.'] Exception: module 'torch' has no attribute 'take_along_dim' Traceback (most recent call last): File "/path/to/pycharm/EPMEI/data_prepro_getGraph.py", line 123, in <module> data_tackled = tackle_dataset(data_list) File "/path/to/pycharm/EPMEI/data_prepro_getGraph.py", line 65, in tackle_dataset predicted_dependencies, dependencies,POS,prehead = get_dependency(sentences) File "/path/to/pycharm/EPMEI/data_prepro_getGraph.py", line 35, in get_dependency sent = doc.sentences UnboundLocalError: local variable 'doc' referenced before assignment
The text was updated successfully, but these errors were encountered:
No branches or pull requests
您好,感谢您的开源🙏。
我按照您的 requirements 配制了环境 torch==1.7.1+cu110、stanza==1.5.1,但是在运行 data_prepro_getGraph.py 代码会报错
UnboundLocalError: local variable 'doc' referenced before assignment
, 且其原因是Exception: module 'torch' has no attribute 'take_along_dim'
。请问应该如何解决?torch.take_along_dim 方法似乎是在 PyTorch 1.10.0 的版本中才引入的? 我是需要更换 PyTorch 的版本么?还是更换 stanza 的版本?
The text was updated successfully, but these errors were encountered: