-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcorruption_evaluator.py
146 lines (113 loc) · 5.01 KB
/
corruption_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import numpy as np
from tools import harmonic_score_gzsl, normalized_accuracy_zsl
import torch.optim as optim
from art.classifiers import PyTorchClassifier
import torchvision
import torch.nn as nn
from fullgraph import FullGraph
import time
def zsl_launch(dataloader, unseenVectors, criterion, params):
if params["dataset"] == "CUB":
from configs.config_CUB import cub_model_paths
model_path = cub_model_paths[params["test_model"]]
elif params["dataset"] == "AWA2":
from configs.config_AWA2 import awa_model_paths
model_path = awa_model_paths[params["test_model"]]
elif params["dataset"] == "SUN":
from configs.config_SUN import sun_model_paths
model_path = sun_model_paths[params["test_model"]]
resnet = torchvision.models.resnet101(pretrained=True).cuda()
feature_extractor = nn.Sequential(*list(resnet.children())[:-1])
print("Loading:", model_path)
model_ale = torch.load(model_path).cuda()
if params["test_model"] == "ant" or params["test_model"] == "augmix":
model_ale = model_ale.ale_graph
full_graph = FullGraph(feature_extractor, model_ale, unseenVectors).cuda()
full_graph.eval()
optimizer = optim.SGD(full_graph.parameters(), lr=0.01, momentum=0.5)
if params["dataset"] == "CUB":
no_classes = 50
elif params["dataset"] == "AWA2":
no_classes = 10
elif params["dataset"] == "SUN":
no_classes = 72
classifier = PyTorchClassifier(model=full_graph, loss=criterion,
optimizer=optimizer, input_shape=(1, 150, 150), nb_classes=no_classes)
batch_size = params["batch_size"]
preds = []
labels_ = []
start= time.time()
for index, sample in enumerate(dataloader):
img = sample[0].numpy()
label = sample[1].numpy()
predictions = classifier.predict(img, batch_size=batch_size)
preds.extend(np.argmax(predictions, axis=1))
labels_.extend(label)
if index % 1000 ==0:
print(index, len(dataloader))
end=time.time()
labels_ = np.array(labels_)
acc_adversarial = normalized_accuracy_zsl(preds, labels_)
print("ZSL Top-1:", acc_adversarial)
print(end-start , "seconds passed for ZSL.")
def gzsl_launch(dataloader_seen, dataloader_unseen, all_vectors, criterion, params):
if params["dataset"] == "CUB":
from configs.config_CUB import cub_model_paths
model_path = cub_model_paths[params["test_model"]]
elif params["dataset"] == "AWA2":
from configs.config_AWA2 import awa_model_paths
model_path = awa_model_paths[params["test_model"]]
elif params["dataset"] == "SUN":
from configs.config_SUN import sun_model_paths
model_path = sun_model_paths[params["test_model"]]
resnet = torchvision.models.resnet101(pretrained=True).cuda()
feature_extractor = nn.Sequential(*list(resnet.children())[:-1])
print("Loading:", model_path)
model_ale = torch.load(model_path).cuda()
if params["test_model"] == "ant" or params["test_model"] == "augmix":
model_ale = model_ale.ale_graph
full_graph = FullGraph(feature_extractor, model_ale, all_vectors).cuda()
full_graph.eval()
optimizer = optim.SGD(full_graph.parameters(), lr=0.01, momentum=0.5)
if params["dataset"] == "CUB":
no_classes = 200
elif params["dataset"] == "AWA2":
no_classes = 50
elif params["dataset"] == "SUN":
no_classes = 717
classifier = PyTorchClassifier(model=full_graph, loss=criterion,
optimizer=optimizer, input_shape=(1, 150, 150), nb_classes=no_classes)
batch_size = params["batch_size"]
preds_seen = []
labels_seen_ = []
start= time.time()
for index, sample in enumerate(dataloader_seen):
img = sample[0].numpy()
label = sample[1].numpy()
predictions = classifier.predict(img, batch_size=batch_size)
preds_seen.extend(np.argmax(predictions, axis=1))
labels_seen_.extend(label)
if index % 1000 ==0:
print(index, len(dataloader_seen))
labels_seen_ = np.array(labels_seen_)
uniq_labels_seen = np.unique(labels_seen_)
labels_unseen_ = []
preds_unseen = []
preds_seen = np.array(preds_seen)
for index, sample in enumerate(dataloader_unseen):
img = sample[0].numpy()
label = sample[1].numpy()
predictions = classifier.predict(img, batch_size=batch_size)
preds_unseen.extend(np.argmax(predictions, axis=1))
labels_unseen_.extend(label)
if index % 1000 ==0:
print(index, len(dataloader_unseen))
end= time.time()
labels_unseen_ = np.array(labels_unseen_)
uniq_labels_unseen = np.unique(labels_unseen_)
combined_labels = np.concatenate((labels_seen_, labels_unseen_))
preds_unseen = np.array(preds_unseen)
combined_preds = np.concatenate((preds_seen, preds_unseen))
harmonic_score_gzsl(combined_preds, combined_labels, uniq_labels_seen, uniq_labels_unseen)
print(end-start , "seconds passed for GZSL.")