@@ -249,9 +249,10 @@ <h4>How will this be assessed?</h4>
249
249
</ div >
250
250
</ div >
251
251
252
-
253
-
254
-
252
+ <!--
253
+ form template:
254
+ https://forms.office.com/Pages/ShareFormPage.aspx?id=DQSIkWdsW0yxEjajBLZtrQAAAAAAAAAAAAN__r0x8x1UNlM0NU1LVUZUQlhIRjVCUFdBOFNKSEswTS4u&sharetoken=AvvnZny1vxgrPmKL5XaA
255
+ -->
255
256
256
257
< hr class ="featurette-divider " id ="schedule ">
257
258
@@ -269,15 +270,15 @@ <h3 class="featurette-heading">Schedule</h3>
269
270
< th style ='width:27% '> Content</ th >
270
271
< th style ='width:12% '> Files</ th >
271
272
< th style ='width:11% '> Activity</ th >
272
- < th style ='width:10 % '> Room </ th >
273
- < th style ='width:20 % '> Lecturer</ th >
273
+ < th style ='width:14 % '> Feedback </ th >
274
+ < th style ='width:16 % '> Lecturer</ th >
274
275
</ tr >
275
276
276
277
277
278
< tr >
278
279
< td rowspan ="2 "> Mon</ td >
279
280
< td > 10 - 12</ td >
280
- < td > Introduction to Machine Learning </ td >
281
+ < td > 1: Introduction to Machine Learning</ td >
281
282
< td >
282
283
< a target ="_blank " class ="table-files-link "
283
284
href ="https://github.com/ML4NS/ml4ns.github.io/raw/main/slides/01-%20Introduction/Lecture1_Introduction.pptx ">
@@ -290,7 +291,11 @@ <h3 class="featurette-heading">Schedule</h3>
290
291
</ a >
291
292
</ td >
292
293
< td > Lecture</ td >
293
- < td > </ td >
294
+ < td >
295
+ < a target ="_blank " href ="https://forms.office.com/r/giifkiSZjv ">
296
+ ☆☆☆☆☆
297
+ </ a >
298
+ </ td >
294
299
< td > P. Barnaghi</ td >
295
300
</ tr >
296
301
< tr >
@@ -309,6 +314,9 @@ <h3 class="featurette-heading">Schedule</h3>
309
314
</ td >
310
315
< td > Lab </ td >
311
316
< td >
317
+ < a target ="_blank " href ="https://forms.office.com/r/giifkiSZjv ">
318
+ ☆☆☆☆☆
319
+ </ a >
312
320
</ td >
313
321
< td > P. Barnaghi</ td >
314
322
</ tr >
@@ -317,7 +325,7 @@ <h3 class="featurette-heading">Schedule</h3>
317
325
< tr >
318
326
< td rowspan ="2 "> Tue</ td >
319
327
< td > 10 - 12</ td >
320
- < td > Linear Models </ td >
328
+ < td > 2: Linear Models</ td >
321
329
< td >
322
330
< a target ="_blank " class ="table-files-link "
323
331
href ="https://github.com/ML4NS/ml4ns.github.io/raw/main/slides/02-%20Regression%20models%20and%20linear%20prediction/ML4NuerScience_Linear_models.pptx ">
@@ -330,7 +338,11 @@ <h3 class="featurette-heading">Schedule</h3>
330
338
</ a >
331
339
</ td >
332
340
< td > Lecture </ td >
333
- < td > </ td >
341
+ < td >
342
+ < a target ="_blank " href ="https://forms.office.com/r/A370pCwixx ">
343
+ ☆☆☆☆☆
344
+ </ a >
345
+ </ td >
334
346
< td > P. Barnaghi</ td >
335
347
</ tr >
336
348
< tr >
@@ -343,15 +355,19 @@ <h3 class="featurette-heading">Schedule</h3>
343
355
</ a >
344
356
</ td >
345
357
< td > Lab </ td >
346
- < td > </ td >
358
+ < td >
359
+ < a target ="_blank " href ="https://forms.office.com/r/A370pCwixx ">
360
+ ☆☆☆☆☆
361
+ </ a >
362
+ </ td >
347
363
< td > P. Barnaghi</ td >
348
364
</ tr >
349
365
350
366
351
367
< tr >
352
368
< td rowspan ="2 "> Wed</ td >
353
369
< td > 10 - 12</ td >
354
- < td > Probability and Information Theory </ td >
370
+ < td > 3: Probability and Information Theory</ td >
355
371
< td >
356
372
< a target ="_blank " class ="table-files-link "
357
373
href ="https://github.com/ML4NS/ml4ns.github.io/raw/main/slides/03-%20Probability%20and%20information%20theory/ML4NuerScience_Probability_info_theory.pptx ">
@@ -364,7 +380,11 @@ <h3 class="featurette-heading">Schedule</h3>
364
380
</ a >
365
381
</ td >
366
382
< td > Lecture </ td >
367
- < td > </ td >
383
+ < td >
384
+ < a target ="_blank " href ="https://forms.office.com/r/6RRM6zfnAu ">
385
+ ☆☆☆☆☆
386
+ </ a >
387
+ </ td >
368
388
< td > P. Barnaghi</ td >
369
389
</ tr >
370
390
< tr >
@@ -385,7 +405,7 @@ <h3 class="featurette-heading">Schedule</h3>
385
405
< tr >
386
406
< td rowspan ="2 "> Thur</ td >
387
407
< td > 10 - 12</ td >
388
- < td > Bayesian Models </ td >
408
+ < td > 4: Bayesian Models</ td >
389
409
< td >
390
410
< a target ="_blank " class ="table-files-link "
391
411
href ="https://github.com/ML4NS/ml4ns.github.io/raw/main/slides/04-%20Bayesian%20models/ML4NuerScience_BayesianModels.pptx ">
@@ -398,7 +418,11 @@ <h3 class="featurette-heading">Schedule</h3>
398
418
</ a >
399
419
</ td >
400
420
< td > Lecture </ td >
401
- < td > </ td >
421
+ < td >
422
+ < a target ="_blank " href ="https://forms.office.com/r/4jLfFyTJv6 ">
423
+ ☆☆☆☆☆
424
+ </ a >
425
+ </ td >
402
426
< td > P. Barnaghi</ td >
403
427
</ tr >
404
428
< tr >
@@ -411,15 +435,19 @@ <h3 class="featurette-heading">Schedule</h3>
411
435
</ a >
412
436
</ td >
413
437
< td > Lab </ td >
414
- < td > </ td >
438
+ < td >
439
+ < a target ="_blank " href ="https://forms.office.com/r/4jLfFyTJv6 ">
440
+ ☆☆☆☆☆
441
+ </ a >
442
+ </ td >
415
443
< td > P. Barnaghi</ td >
416
444
</ tr >
417
445
418
446
419
447
< tr >
420
448
< td rowspan ="2 "> Fri</ td >
421
449
< td > 10 - 12</ td >
422
- < td > Ensemble Models and Kernel Based Models </ td >
450
+ < td > 5: Ensemble Models and Kernel Based Models</ td >
423
451
< td >
424
452
< a target ="_blank " class ="table-files-link "
425
453
href ="https://github.com/ML4NS/ml4ns.github.io/raw/main/slides/05-%20Ensemble%20models%20and%20kernel-based%20models/ML4NuerScience_ensemble%20models_kernel_models.pptx ">
@@ -432,7 +460,11 @@ <h3 class="featurette-heading">Schedule</h3>
432
460
</ a >
433
461
</ td >
434
462
< td > Lecture </ td >
435
- < td > </ td >
463
+ < td >
464
+ < a target ="_blank " href ="https://forms.office.com/r/jq9CG6A8KP ">
465
+ ☆☆☆☆☆
466
+ </ a >
467
+ </ td >
436
468
< td > P. Barnaghi</ td >
437
469
</ tr >
438
470
< tr >
@@ -445,7 +477,11 @@ <h3 class="featurette-heading">Schedule</h3>
445
477
</ a >
446
478
</ td >
447
479
< td > Lab </ td >
448
- < td > </ td >
480
+ < td >
481
+ < a target ="_blank " href ="https://forms.office.com/r/jq9CG6A8KP ">
482
+ ☆☆☆☆☆
483
+ </ a >
484
+ </ td >
449
485
< td > P. Barnaghi</ td >
450
486
</ tr >
451
487
@@ -471,15 +507,15 @@ <h3 class="featurette-heading">Schedule</h3>
471
507
< th style ='width:27% '> Content</ th >
472
508
< th style ='width:12% '> Files</ th >
473
509
< th style ='width:11% '> Activity</ th >
474
- < th style ='width:10% '> Room </ th >
510
+ < th style ='width:10% '> Feedback </ th >
475
511
< th style ='width:20% '> Lecturer</ th >
476
512
</ tr >
477
513
478
514
479
515
< tr >
480
516
< td rowspan ="2 "> Mon</ td >
481
517
< td > 10 - 12</ td >
482
- < td > Neural Networks </ td >
518
+ < td > 6: Neural Networks</ td >
483
519
< td >
484
520
< a target ="_blank " class ="table-files-link "
485
521
href ="https://github.com/ML4NS/ml4ns.github.io/raw/main/slides/06-%20Neural%20Networks/ML4NuerScience_NeuralNets.pptx ">
@@ -492,28 +528,36 @@ <h3 class="featurette-heading">Schedule</h3>
492
528
</ a >
493
529
</ td >
494
530
< td > Lecture </ td >
495
- < td > </ td >
531
+ < td >
532
+ < a target ="_blank " href ="https://forms.office.com/r/YWB1CebreQ ">
533
+ ☆☆☆☆☆
534
+ </ a >
535
+ </ td >
496
536
< td > P. Barnaghi</ td >
497
537
</ tr >
498
538
< tr >
499
539
< td > 1 - 4</ td >
500
- < td > Building and Traning a Simple Neural Network in PyTorch ★</ td >
540
+ < td > Building and Traning a Simple Neural Network in PyTorch ★ ♦ </ td >
501
541
< td >
502
542
< a target ="_blank " class ="table-files-link notebook-link-table "
503
543
href ="https://github.com/ML4NS/ml4ns.github.io/blob/main/labs/06%20-%20Neural%20Networks/06%20-%20Neural%20Networks.ipynb ">
504
544
🖳
505
545
</ a >
506
546
</ td >
507
547
< td > Lab </ td >
508
- < td > </ td >
548
+ < td >
549
+ < a target ="_blank " href ="https://forms.office.com/r/YWB1CebreQ ">
550
+ ☆☆☆☆☆
551
+ </ a >
552
+ </ td >
509
553
< td > P. Barnaghi</ td >
510
554
</ tr >
511
555
512
556
513
557
< tr >
514
558
< td rowspan ="2 "> Tue</ td >
515
559
< td > 10 - 12</ td >
516
- < td > Convolutional Neural Networks (CNNs) </ td >
560
+ < td > 7: Convolutional Neural Networks (CNNs)</ td >
517
561
< td >
518
562
< a target ="_blank " class ="table-files-link "
519
563
href ="https://github.com/ML4NS/ml4ns.github.io/raw/main/slides/07-%20Convolutional%20Neural%20Networks/ML4NuerScience_CNN.pptx ">
@@ -526,7 +570,11 @@ <h3 class="featurette-heading">Schedule</h3>
526
570
</ a >
527
571
</ td >
528
572
< td > Lecture </ td >
529
- < td > </ td >
573
+ < td >
574
+ < a target ="_blank " href ="https://forms.office.com/r/TD6gmZ91pT ">
575
+ ☆☆☆☆☆
576
+ </ a >
577
+ </ td >
530
578
< td > P. Barnaghi</ td >
531
579
</ tr >
532
580
< tr >
@@ -539,7 +587,11 @@ <h3 class="featurette-heading">Schedule</h3>
539
587
</ a >
540
588
</ td >
541
589
< td > Lab </ td >
542
- < td > </ td >
590
+ < td >
591
+ < a target ="_blank " href ="https://forms.office.com/r/TD6gmZ91pT ">
592
+ ☆☆☆☆☆
593
+ </ a >
594
+ </ td >
543
595
< td > P. Barnaghi</ td >
544
596
</ tr >
545
597
@@ -548,7 +600,7 @@ <h3 class="featurette-heading">Schedule</h3>
548
600
< tr >
549
601
< td rowspan ="2 "> Wed</ td >
550
602
< td > 10 - 12</ td >
551
- < td > Applications and Neuroscience Inspired Machine Learning </ td >
603
+ < td > 8: Applications and Neuroscience Inspired Machine Learning ♣ </ td >
552
604
< td >
553
605
< a target ="_blank " class ="table-files-link "
554
606
href ="https://github.com/ML4NS/ml4ns.github.io/raw/main/slides/08-%20Applications%20in%20neuroscience%20and%20neuroscience%20inspired%20models/ML4NuerScience_Applications.pptx ">
@@ -561,7 +613,11 @@ <h3 class="featurette-heading">Schedule</h3>
561
613
</ a >
562
614
</ td >
563
615
< td > Lecture </ td >
564
- < td > </ td >
616
+ < td >
617
+ < a target ="_blank " href ="https://forms.office.com/r/tqKdE19XsM ">
618
+ ☆☆☆☆☆
619
+ </ a >
620
+ </ td >
565
621
< td > P. Barnaghi</ td >
566
622
</ tr >
567
623
< tr >
@@ -579,7 +635,7 @@ <h3 class="featurette-heading">Schedule</h3>
579
635
< tr >
580
636
< td rowspan ="2 "> Thur</ td >
581
637
< td > 10 - 12</ td >
582
- < td > Ethical Considerations and Responsible Machine Learning </ td >
638
+ < td > 9: Ethical Considerations and Responsible Machine Learning</ td >
583
639
< td >
584
640
< a target ="_blank " class ="table-files-link "
585
641
href ="https://github.com/ML4NS/ml4ns.github.io/raw/main/slides/09-%20Ethical%20considerations%20and%20responsible%20machine%20learning/ML4NuerScience_Ethical_MLpptx.pptx ">
@@ -592,12 +648,16 @@ <h3 class="featurette-heading">Schedule</h3>
592
648
</ a >
593
649
</ td >
594
650
< td > Lecture </ td >
595
- < td > </ td >
651
+ < td >
652
+ < a target ="_blank " href ="https://forms.office.com/r/UF9DcLzCv1 ">
653
+ ☆☆☆☆☆
654
+ </ a >
655
+ </ td >
596
656
< td > P. Barnaghi</ td >
597
657
</ tr >
598
658
< tr >
599
659
< td > 1 - 4</ td >
600
- < td > Use-case Evaluation ★</ td >
660
+ < td > 10: Use-case Evaluation ★</ td >
601
661
< td > </ td >
602
662
< td > Lab </ td >
603
663
< td > </ td >
@@ -633,6 +693,10 @@ <h3 class="featurette-heading">Schedule</h3>
633
693
< p > ★: Marked labs; 🗟: Slides; 🗐: Notes; 🖳: Download lab; < img
634
694
class ="colab-icon "> </ img > : Open lab in Colab
635
695
</ p >
696
+ < p > ♦: Guest Lecture: Introduction to Pytorch with Alex Capstick</ p >
697
+ < p > ♣: Guest Lecture: Large Language Models for Electronic Healthcare Records (EHR) Data Analysis with
698
+ Louise
699
+ Rigny (Data Scientist, Great Ormond Street Hospital)</ p >
636
700
</ div >
637
701
638
702
@@ -641,15 +705,13 @@ <h3 class="featurette-heading">Schedule</h3>
641
705
642
706
< caption > Week 3 - Starting Monday 29th January</ caption >
643
707
644
-
645
-
646
708
< tr >
647
709
< th style ='width:8% '> Date</ th >
648
710
< th style ='width:12% '> Time</ th >
649
711
< th style ='width:27% '> Content</ th >
650
712
< th style ='width:12% '> Files</ th >
651
713
< th style ='width:11% '> Activity</ th >
652
- < th style ='width:10% '> Room </ th >
714
+ < th style ='width:10% '> Feedback </ th >
653
715
< th style ='width:20% '> Lecturer</ th >
654
716
</ tr >
655
717
@@ -713,13 +775,34 @@ <h3 class="featurette-heading">Schedule</h3>
713
775
714
776
</ table >
715
777
</ div >
778
+
779
+ < div style ="margin-top: 2em; ">
780
+ < p >
781
+ In March/April 2024 there will be an optional series on Generative AI and Large Language Models (LLMs)
782
+ covering the topics:
783
+ </ p >
784
+ < ul >
785
+ < li >
786
+ Variational Auto-encoders
787
+ </ li >
788
+ < li >
789
+ Transformers and Large Language Models
790
+ </ li >
791
+ < li >
792
+ Diffusion Models
793
+ </ li >
794
+ </ ul >
795
+ < p > Last years slides are available at... </ p >
796
+ </ div >
797
+
716
798
</ div >
717
799
718
800
719
801
720
802
721
803
722
804
805
+
723
806
< hr class ="featurette-divider " id ="lectures ">
724
807
725
808
< div class ="featurette ">
@@ -1077,7 +1160,7 @@ <h3 class="featurette-heading">Setting Up Your Conda Environment</h3>
1077
1160
< h3 class ="featurette-heading "> GitHub</ h3 >
1078
1161
< p >
1079
1162
The GitHub repository for this course is available here:
1080
- < a target ="_blank " class ="github-icon-container " href ="https://github.com/PBarnaghi/ ML4NS ">
1163
+ < a target ="_blank " class ="github-icon-container " href ="https://github.com/ML4NS/ml4ns.github.io ">
1081
1164
GitHub
1082
1165
< img class ="github-icon "> </ img >
1083
1166
</ a >
0 commit comments