forked from alecwangcq/KFAC-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
243 lines (199 loc) · 8.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
'''Train CIFAR10/CIFAR100 with PyTorch.'''
import argparse
import os
from optimizers import (KFACOptimizer, EKFACOptimizer)
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import MultiStepLR
from tqdm import tqdm
from tensorboardX import SummaryWriter
from utils.network_utils import get_network
from utils.data_utils import get_dataloader
# fetch args
parser = argparse.ArgumentParser()
parser.add_argument('--network', default='vgg16_bn', type=str)
parser.add_argument('--depth', default=19, type=int)
parser.add_argument('--dataset', default='cifar10', type=str)
# densenet
parser.add_argument('--growthRate', default=12, type=int)
parser.add_argument('--compressionRate', default=2, type=int)
# wrn, densenet
parser.add_argument('--widen_factor', default=1, type=int)
parser.add_argument('--dropRate', default=0.0, type=float)
parser.add_argument('--device', default='cuda', type=str)
parser.add_argument('--resume', '-r', action='store_true')
parser.add_argument('--load_path', default='', type=str)
parser.add_argument('--log_dir', default='runs/pretrain', type=str)
parser.add_argument('--optimizer', default='kfac', type=str)
parser.add_argument('--batch_size', default=64, type=float)
parser.add_argument('--epoch', default=100, type=int)
parser.add_argument('--milestone', default=None, type=str)
parser.add_argument('--learning_rate', default=0.01, type=float)
parser.add_argument('--momentum', default=0.9, type=float)
parser.add_argument('--stat_decay', default=0.95, type=float)
parser.add_argument('--damping', default=1e-3, type=float)
parser.add_argument('--kl_clip', default=1e-2, type=float)
parser.add_argument('--weight_decay', default=3e-3, type=float)
parser.add_argument('--TCov', default=10, type=int)
parser.add_argument('--TScal', default=10, type=int)
parser.add_argument('--TInv', default=100, type=int)
parser.add_argument('--prefix', default=None, type=str)
args = parser.parse_args()
# init model
nc = {
'cifar10': 10,
'cifar100': 100
}
num_classes = nc[args.dataset]
net = get_network(args.network,
depth=args.depth,
num_classes=num_classes,
growthRate=args.growthRate,
compressionRate=args.compressionRate,
widen_factor=args.widen_factor,
dropRate=args.dropRate)
net = net.to(args.device)
# init dataloader
trainloader, testloader = get_dataloader(dataset=args.dataset,
train_batch_size=args.batch_size,
test_batch_size=256)
# init optimizer and lr scheduler
optim_name = args.optimizer.lower()
tag = optim_name
if optim_name == 'sgd':
optimizer = optim.SGD(net.parameters(),
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay)
elif optim_name == 'kfac':
optimizer = KFACOptimizer(net,
lr=args.learning_rate,
momentum=args.momentum,
stat_decay=args.stat_decay,
damping=args.damping,
kl_clip=args.kl_clip,
weight_decay=args.weight_decay,
TCov=args.TCov,
TInv=args.TInv)
elif optim_name == 'ekfac':
optimizer = EKFACOptimizer(net,
lr=args.learning_rate,
momentum=args.momentum,
stat_decay=args.stat_decay,
damping=args.damping,
kl_clip=args.kl_clip,
weight_decay=args.weight_decay,
TCov=args.TCov,
TScal=args.TScal,
TInv=args.TInv)
else:
raise NotImplementedError
if args.milestone is None:
lr_scheduler = MultiStepLR(optimizer, milestones=[int(args.epoch*0.5), int(args.epoch*0.75)], gamma=0.1)
else:
milestone = [int(_) for _ in args.milestone.split(',')]
lr_scheduler = MultiStepLR(optimizer, milestones=milestone, gamma=0.1)
# init criterion
criterion = nn.CrossEntropyLoss()
start_epoch = 0
best_acc = 0
if args.resume:
print('==> Resuming from checkpoint..')
assert os.path.isfile(args.load_path), 'Error: no checkpoint directory found!'
checkpoint = torch.load(args.load_path)
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
print('==> Loaded checkpoint at epoch: %d, acc: %.2f%%' % (start_epoch, best_acc))
# init summary writter
log_dir = os.path.join(args.log_dir, args.dataset, args.network, args.optimizer,
'lr%.3f_wd%.4f_damping%.4f' %
(args.learning_rate, args.weight_decay, args.damping))
if not os.path.isdir(log_dir):
os.makedirs(log_dir)
writer = SummaryWriter(log_dir)
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
lr_scheduler.step()
desc = ('[%s][LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)' %
(tag, lr_scheduler.get_lr()[0], 0, 0, correct, total))
writer.add_scalar('train/lr', lr_scheduler.get_lr()[0], epoch)
prog_bar = tqdm(enumerate(trainloader), total=len(trainloader), desc=desc, leave=True)
for batch_idx, (inputs, targets) in prog_bar:
inputs, targets = inputs.to(args.device), targets.to(args.device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
if optim_name in ['kfac', 'ekfac'] and optimizer.steps % optimizer.TCov == 0:
# compute true fisher
optimizer.acc_stats = True
with torch.no_grad():
sampled_y = torch.multinomial(torch.nn.functional.softmax(outputs.cpu().data, dim=1),
1).squeeze().cuda()
loss_sample = criterion(outputs, sampled_y)
loss_sample.backward(retain_graph=True)
optimizer.acc_stats = False
optimizer.zero_grad() # clear the gradient for computing true-fisher.
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
desc = ('[%s][LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)' %
(tag, lr_scheduler.get_lr()[0], train_loss / (batch_idx + 1), 100. * correct / total, correct, total))
prog_bar.set_description(desc, refresh=True)
writer.add_scalar('train/loss', train_loss/(batch_idx + 1), epoch)
writer.add_scalar('train/acc', 100. * correct / total, epoch)
def test(epoch):
global best_acc
net.eval()
test_loss = 0
correct = 0
total = 0
desc = ('[%s][LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (tag,lr_scheduler.get_lr()[0], test_loss/(0+1), 0, correct, total))
prog_bar = tqdm(enumerate(testloader), total=len(testloader), desc=desc, leave=True)
with torch.no_grad():
for batch_idx, (inputs, targets) in prog_bar:
inputs, targets = inputs.to(args.device), targets.to(args.device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
desc = ('[%s][LR=%s] Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (tag, lr_scheduler.get_lr()[0], test_loss / (batch_idx + 1), 100. * correct / total, correct, total))
prog_bar.set_description(desc, refresh=True)
# Save checkpoint.
acc = 100.*correct/total
writer.add_scalar('test/loss', test_loss / (batch_idx + 1), epoch)
writer.add_scalar('test/acc', 100. * correct / total, epoch)
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
'loss': test_loss,
'args': args
}
torch.save(state, '%s/%s_%s_%s%s_best.t7' % (log_dir,
args.optimizer,
args.dataset,
args.network,
args.depth))
best_acc = acc
def main():
for epoch in range(start_epoch, args.epoch):
train(epoch)
test(epoch)
return best_acc
if __name__ == '__main__':
main()