-
Notifications
You must be signed in to change notification settings - Fork 3
/
ucFIMTDD_LS.py
682 lines (602 loc) · 22 KB
/
ucFIMTDD_LS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
__author__ = 'matsrichter'
import numpy as np
class FIMTDD:
"""
The Learning Algorithm as Object
"""
def __init__(self,gamma=0.01,n_min = 96,alpha=0.05,threshold=50,learn=0.01):
"""
:param gamma: used for hoefding-bound
:param n_min: time intervall for checking splits and alt-trees
:param alpha: used for change detection
:param threshold: threshold for change detection
:return:
"""
self.root = LeafNode(self,n_min=n_min,gamma=gamma,alpha=alpha,threshold=threshold,learn=learn)
self.gamma = gamma
self.alpha = alpha
self.threshold = threshold
self.n_min = n_min
self.detection = True
self.l = learn
self.c = 0
pass
def eval(self,x):
try:
k = x[0]
except:
x = [x]
#self.c += 1
yp = self.root.eval(np.array(x))
# print yp
return yp
def eval_and_learn(self,x,y):
try:
k = x[0]
except:
x = [x]
self.c += 1
self.root.isroot = True
yp = self.root.eval_and_learn(np.array(x),y)
#print str(self.c)+" ( yp: "+str(yp)+", y: "+str(y)+")"+" loss: "+str(np.fabs(yp-y))
return yp
def count_nodes(self):
node = self.root
def c_l(node):
if type(node) == LeafNode:
return 1
else:
return 1 + c_l(node.left) + c_l(node.right)
sol = c_l(node)
return sol
def count_leaves(self):
node = self.root
def c_l(node):
if type(node) == LeafNode:
return 1
else:
return c_l(node.left) + c_l(node.right)
sol = c_l(node)
return sol
class Node:
i_c = 0
def __init__(self,parent,key=None,key_dim=0,left=None,right=None,alpha=0.005,threshold=50,n_min=100,gamma=0.01,learn=0.1):
"""
:param parent: The parent of the node
:param key: the key of the node
:param key_dim: indicates the attribute of the key value
:param left: left child-node
:param right: right child-node
:param alpha: alpha value for change-detection
:param threshold: threshold for change detection
:param n_min: minimum time period for split and subtree replacement
:param gamma: value for the hoefding-bound
:param learn: learning rate of the leafnote
:return:
"""
self.gamma = gamma
self.c_x = 0
self.y = 0.0
self.y_sq = 0.0
self.alpha = alpha
self.n_min = n_min
self.key = key
self.key_dim = key_dim
self.parent = parent
self.left = left
self.right = right
self.isLeaf = False
Node.i_c += 1
self.index = Node.i_c #self.parent.index +1
self.cumloss = 0.0
self.minPH = None
self.PH = 0.0
self.threshold = threshold
#turns on or of change detection
self.detection = True
self.alt_tree = None
self.isAlt = False
self.sq_loss = 0.0
self.cum_sq_loss = 0.0
self.alt_counter = 0
self.isroot = False
self.update_root()
self.l = learn
self.S_i = 0
def update_root(self):
if isinstance(self.parent,FIMTDD):
self.isroot = True
else:
self.isroot = False
def update_alt(self,val):
self.isAlt = val
if self.left != None:
self.left.update_alt(val)
if self.right != None:
self.right.update_alt(val)
def eval(self,x):
"""
:param x: data point
:return: prediction
"""
if x[self.key_dim] <= self.key:
yp = self.left.eval(x)
else:
yp = self.right.eval(x)
return yp
def eval_and_learn(self,x,y):
"""
:param x: data point
:param y: label
:return: prediction
"""
#increment seen sample counter
self.c_x += 1
#init prediction-variable
yp = 0.0
#get prediction
if x[self.key_dim] <= self.key:
yp = self.left.eval_and_learn(x,y)
else:
yp = self.right.eval_and_learn(x,y)
#change detection segment start
if self.alt_tree != None:
#increment alt_counter if alternate tree exists
self.alt_counter += 1
self.alt_tree.eval_and_learn(x,y)
#update squared error
self.sq_loss = (y - yp)**2
self.S_i = (self.S_i*0.995) + self.sq_loss
if self.alt_tree != None and self.alt_counter%self.n_min == 0 and self.alt_counter != 0:
#check all n_min samples the q statistics of current and alt-tree
if self.c_x == 0:
this_q = 0.0
alt_q = 1.0
else:
this_q = self.S_i
alt_q = self.alt_tree.S_i
if alt_q == 0:
alt_q = 0.00000001
#print("Check Q: "+str(this_q)+ str(alt_q)+ " at "+ str(x+y))
if not this_q == 0.0 and np.log(this_q/alt_q) > 0:
#if alt-tree has better performance, replace this node with alternate subtree
#print "Replaced alt tree (LS) @",self.index
#print ("Replacement has happend at " + str(x+y))
if self.isroot:
self.parent.root = self.alt_tree
elif self.parent.left.index == self.index:
self.parent.left = self.alt_tree
else:
self.parent.right = self.alt_tree
self.alt_tree.parent = self.parent
self.alt_tree.update_alt(False)
self.alt_tree.detection = True
if self.alt_counter >= self.n_min*10:
#if alternate tree is still not better than the current one, remove it
self.alt_tree = None
self.alt_counter = 0
self.cum_sq_loss += self.sq_loss
#change detection segment end
if self.detect_change(y,yp) and self.detection and not self.isAlt and self.alt_tree is None:
#avoid change detection on higher levels and grow subtree
self.parent.detection = False
self.grow_alt_tree()
#elif not self.detection and not self.isAlt:
# #activate change detection if this node is not root of a subtree
# self.parent.detection = False
# self.detection = True
if self.alt_tree != None or (not self.detection and not self.isAlt):
#deactivate change detection on all higher level nodes if low level change detection is allready triggered
self.parent.detection = False
self.detection = False
else:
self.detection = True
return yp
def grow_alt_tree(self):
"""
creates an alternative tree
:return:
"""
#print "gorow alt node: "+str(self.index)
#self.alt_tree = LeafNode(self,self.n_min,None,self.gamma,self.alpha,threshold=self.threshold,learn=self.l)
self.alt_tree = LeafNode(self,n_min=self.n_min,model=None,gamma=self.gamma,alpha=self.alpha,threshold=self.threshold,learn=self.l)
#self.alt_tree.index += 3
self.alt_tree.isAlt = True
return
def detect_change(self,y,yp):
"""
Page-Hinckley-Test for change detection
:param y: the true label value
:param yp: the prediction
:return: true if change is detected, else false
"""
#return False
error = np.fabs(y-yp)
self.cumloss += error
self.PH += error - (self.cumloss/self.c_x) - self.alpha
if self.minPH is None or self.PH < self.minPH :
self.minPH = self.PH
return self.PH - self.minPH > self.threshold
#return False
class LeafNode(Node):
"""
LeafNode-Object for FIMTDD
"""
def __init__(self,parent,n_min,model=None,gamma=0.01,alpha=0.005,threshold=50,learn=0.1):
"""
:param parent: parent node
:param n_min: minimum intervall for split and alt-tree replacement
:param model: the perceptron
:param gamma: hoefding-bound value
:param alpha: used for change detection
:param threshold: threshold for change detection
:return:
"""
Node.__init__(self,parent,None,0,None,None,alpha=alpha,threshold=threshold,n_min=n_min)
self.isLeaf = True
self.n_min = n_min
self.gamma = gamma
self.alpha = alpha
self.l = learn
self.criterion = uncertainty_criterion(self.gamma)
if model is None:
self.model = LinearRegressor(self)
else:
self.model = model
#EBST-Tree for storing data,used for splitting
self.ebst = None
self.c = 0
pass
def split(self,splits,index):
"""
:param splits: dictionary containing the best split
:param index: index of the best split, indicating the attribute (dimension in data-vector)
:return:
"""
#return
#print "splitting node at index: "+str(index)
node = Node(self.parent,n_min=self.n_min,key_dim=index,key=splits['bestsplit'],gamma=self.gamma,learn = self.l,threshold=self.threshold,alpha=self.alpha)
left = LeafNode(parent=node,n_min=self.n_min,gamma=self.gamma,alpha=self.alpha,learn = self.l,threshold=self.threshold)
right = LeafNode(parent=node,n_min=self.n_min,gamma=self.gamma,alpha=self.alpha,learn = self.l,threshold=self.threshold)
l1 = LinearRegressor(left,self.model.filter.w,learn = self.l)
l2 = LinearRegressor(right,self.model.filter.w,learn = self.l)
left.model = l1
right.model = l2
#left.index += 1
#right.index += 2
node.left = left
node.right = right
try:
if self.isroot:
self.parent.root = node
node.update_root()
elif self.parent.left.index == self.index:
self.parent.left = node
elif self.parent.right.index == self.index:
self.parent.right = node
else:
self.parent.alt_tree = node
node.update_alt(True)
except:
self.parent.root = node
node.update_root()
def eval(self,x):
"""
:param x: data point
:return: prediction
"""
return self.model.eval(x)
def eval_and_learn(self,x,y):
"""
:param x: data point
:param y: label
:return: prediction
"""
#increment counters (currently unused)
self.c += 1
self.c_x += 1
self.y += y
self.y_sq += y**2
#get prediction from perceptron
yp = self.model.eval_and_learn(x,y)
self.criterion.update(y,yp)
#change detection segment start (exact same same as in Node)
if self.alt_tree != None:
self.alt_counter += 1
self.alt_tree.eval_and_learn(x,y)
self.sq_loss = (y - yp)**2
self.S_i = (self.S_i*0.995) + self.sq_loss
if self.alt_tree != None and self.alt_counter%self.n_min == 0 and self.alt_counter != 0:
if self.alt_tree.c_x == 0:
this_q = 0.0
alt_q = 0.0
else:
this_q = self.S_i
alt_q = self.alt_tree.S_i
if not this_q == 0.0 and np.log(this_q/alt_q) > 0:
self.update_root()
if self.isroot:
self.parent.root = self.alt_tree
elif self.parent.left.index == self.index:
self.parent.left = self.alt_tree
else:
self.parent.right = self.alt_tree
self.alt_tree.isAlt = False
self.alt_tree.detection = True
self.alt_tree.parent = self.parent
if self.alt_counter >= self.n_min*10:
self.alt_tree = None
self.alt_counter = 0
self.cum_sq_loss += self.sq_loss
#change detection segment end
if self.detect_change(y,yp) and self.detection and not self.isAlt and self.alt_tree is None:
self.parent.detection = False
self.grow_alt_tree()
elif not self.detection and not self.isAlt:
self.parent.detection = False
self.detection = True
if self.alt_tree != None or (not self.detection and not self.isAlt):
#deactivate change detection on all higher level nodes if low level change detection is allready triggered
self.parent.detection = False
self.detection = False
else:
self.detection = True
if self.ebst is None:
self.ebst = list()
try:
for xi in x:
tree = E_BST()
self.ebst.append(tree)
except:
tree = E_BST()
self.ebst.append(tree)
for i in range(len(self.ebst)):
self.ebst[i].add(x[i],y)
if self.c > self.n_min and self.criterion.get_uncertainty():
#try to split
splits = list()
for tree in self.ebst:
#find best splits
splits.append(self.findBestSplit(tree))
bi = int(self.findBest(splits))
bound = 1-self.hoefding_bound(splits[bi]['n'])
self.split(splits[bi],bi)
return yp
def findBest(self,splits):
"""
:param splits: list of dictionaries containing the best split per attribute
:return: index of the dictionary with the best split over all attributes
"""
max_index = None
second_place = None
for i in range(len(splits)):
m = splits[i]['max']
if max_index is None or m > max_index:
second_place = max_index
max_index = i
if second_place != None:
splits[max_index]['score'] = splits[second_place]['max']/splits[max_index]['max']
return max_index
def findBestSplit(self,tree,sdr = None):
"""
Recursively calculate the best split of an attribute
:param tree: A EBST-tree
:param sdr: dictionary with global information for the tree search
:return: dictionary with best split and some additional information
"""
assert(isinstance(tree,E_BST))
if sdr is None:
sdr = dict()
sdr['sumtotalLeft'] = 0.0
sdr['sumtotalRight'] = tree.root.l_y + tree.root.r_y
sdr['sumsqtotalLeft'] = 0.0
sdr['sumsqtotalRight'] = tree.root.l_y_sq + tree.root.r_y_sq
sdr['righttotal'] = tree.root.l_count + tree.root.r_count
sdr['total'] = sdr['righttotal']
sdr['n'] = sdr['total']
sdr['max'] = None
if tree.root.left != None:
self.findBestSplit(E_BST(tree.root.left),sdr)
sdr['sumtotalLeft'] = sdr['sumtotalLeft'] + tree.root.l_y
sdr['sumtotalRight'] = sdr['sumtotalRight'] - tree.root.l_y
sdr['sumsqtotalLeft'] = sdr['sumsqtotalLeft'] + tree.root.l_y_sq
sdr['sumsqtotalRight'] = sdr['sumsqtotalRight'] - tree.root.l_y_sq
sdr['righttotal'] = sdr['righttotal'] - tree.root.l_count
new_sdr = self.computeSDR(sdr)
if(sdr['max'] is None or new_sdr > sdr['max']):
sdr['2nd'] = sdr['max']
sdr['max'] = new_sdr
try:
if not new_sdr == 0.0:
sdr['score'] = sdr['2nd'] / new_sdr
else:
sdr['score'] = 1.0
except:
sdr['score'] = 1.0
sdr['bestsplit'] = tree.root.key
if tree.root.right != None:
self.findBestSplit(E_BST(tree.root.right),sdr)
sdr['sumtotalLeft'] = sdr['sumtotalLeft'] - tree.root.l_y
sdr['sumtotalRight'] = sdr['sumtotalRight'] + tree.root.l_y
sdr['sumsqtotalLeft'] = sdr['sumsqtotalLeft'] - tree.root.l_y_sq
sdr['sumsqtotalRight'] = sdr['sumsqtotalRight'] + tree.root.l_y_sq
sdr['righttotal'] = sdr['righttotal'] + tree.root.l_count
#sdr['total'] = sdr['righttotal']
return sdr
def sd(self,n,y_sq_count, y_count):
if n == 0:
return 0.0
n_inv = 1/float(n)
return np.sqrt(np.fabs(n_inv*(y_sq_count - (n_inv*(y_count**2)))))
def computeSDR(self,sdr):
"""
calculate the standard devitation reduction
:param sdr: dictionary from the findBestSplit-Function
:return: SDR-value (float)
"""
n_l = sdr['total']- sdr['righttotal']
n_r = sdr['righttotal']
l_s = sdr['sumtotalLeft']
l_s_sq = sdr['sumsqtotalLeft']
r_s = sdr['sumtotalRight']
r_s_sq = sdr['sumsqtotalRight']
total = float(n_l+n_r)
base = self.sd(n_l+n_r, l_s_sq+r_s_sq, l_s+r_s)
sd_l = self.sd(n_l,l_s_sq,l_s)
ratio_l = n_l/total
sd_r = self.sd(n_r,r_s_sq,r_s)
ratio_r = n_r/total
return base - (ratio_l*sd_l) - (ratio_r*sd_r)
def hoefding_bound(self,n):
"""
:param n: the totalnumber of samples seen
:return: hoefding-bound
"""
log = np.log(1.0/self.gamma)
n = 2*n
result = np.sqrt(log/n)
#result = np.sqrt(np.log(1.0/self.gamma)/(2.0*n))
return result
import padasip as pa
class LinearRegressor:
"""
A perceptron for FIMTDD
"""
def __init__(self,leafnode,w=None,learn = 0.01):
self.leafnode = leafnode
self.l = learn
self.covM = 10 ** 3
if w is None:
self.w = w
else:
self.w = np.random.rand(len(w))
self.w = self.w / np.linalg.norm(self.w)
k = list()
for i in range(len(self.w)):
self.w[i] = w[i]
k.append(w[i])
self.S = self.covM * np.identity(len(self.w))
self.filter = pa.filters.FilterRLS(len(self.w))
self.filter.w = k
self.x_count = None
self.x_sq_count = None
self.c = 0.0
self.forgF = 1.0
def eval(self,x):
if self.x_count is None:
self.x_count = np.zeros(len(x))
self.x_sq_count = np.zeros(len(x))
#x = self.normalize(x,0)
x = np.hstack((1.0,x))
if self.w is None:
self.w = np.random.rand(len(x))
self.w = self.w/np.linalg.norm(self.w)
self.S = self.covM * np.identity(len(self.w))
self.filter = pa.filters.FilterRLS(len(self.w))
#yp = np.inner(x,self.w)
yp = self.filter.predict(x)
return yp
def eval_and_learn(self,x,y):
yp = self.eval(x)
self.x_count += x
self.x_sq_count += x**2
self.c += 1.0
#x = self.normalize(x,y)
x = np.hstack((1.0,x))
self.learn(x,y,yp)
#return self.filter.predict(x)
return yp
def rls_learn(self, x, phiX, y, yp):
deltaAlpha = np.dot(self.S, phiX) / ((self.forgF + np.inner(phiX, np.dot(self.S, phiX))) * (y - yp))
#print deltaAlpha
self.S = self.S / self.forgF - np.outer(np.dot(self.S, phiX), np.dot(phiX, self.S)) \
/ (self.forgF * (self.forgF + np.inner(np.dot(phiX, self.S), phiX)))
#print self.S
self.filter.adapt(y,x)
return deltaAlpha
def learn(self,x,y,yp):
delta = self.l * (y - yp)*x
self.rls_learn(x,self.w,y,yp)
self.w += delta
#self.w = self.w/np.linalg.norm(self.w)
def normalize(self,x,y):
sd = self.leafnode.sd(self.c,self.x_sq_count,self.x_count)
avg = self.x_count/self.c
if sd == 0:
return x
norm = (x - avg)/(3*sd)
return norm
def denormalize(self,x,y):
pass
class E_BST:
def __init__(self,root = None):
self.root = root
def add(self,key,y):
if self.root is None:
self.root = Node_EBST(key,y)
else:
self.root.add(key,y)
class Node_EBST:
def __init__(self,x,y,parent = None):
self.key = x
self.parent = parent
self.left = None
self.right = None
self.l_count = 1
self.l_y = y
self.l_y_sq = y**2
self.r_count = 0
self.r_y = 0
self.r_y_sq = 0
def add(self,val,y):
if val <= self.key:
self.l_count += 1
self.l_y += y
self.l_y_sq += y**2
if self.left is None and val != self.key:
self.left = Node_EBST(val,y,self)
elif val == self.key:
pass
else:
self.left.add(val,y)
else:
self.r_count += 1
self.r_y += y
self.r_y_sq += y**2
if self.right is None:
self.right = Node_EBST(val,y,self)
else:
self.right.add(val,y)
return
class uncertainty_criterion:
def __init__(self,gamma,mean=False):
self.gamma = gamma
self.sq_sum = 0
self.sum = 0
self.counter = 0.0
self.y_sum = 0
self.y_sq = 0
self.mean = mean
def update(self,y,yp):
error = np.sqrt((y-yp)**2)
self.sq_sum += error**2
self.sum += error
self.counter += 1
def mean_err(self):
return self.sum / self.counter
def meean_y(self):
return self.y_sum / self.counter
def sd(self,n,y_sq_count, y_count):
if n == 0:
return 0.0
n_inv = 1/float(n)
return np.sqrt(np.fabs(n_inv*(y_sq_count - (n_inv*(y_count**2)))))
def get_uncertainty(self):
error_sd = self.sd(self.counter,self.sq_sum,self.sum)
y_sd = self.sd(self.counter,self.y_sq,self.y_sum)
if y_sd == 0:
return False
elif not self.mean:
return error_sd / y_sd > self.gamma
else:
return self.mean_err() / y_sd > self.gamma