-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrunner.py
227 lines (177 loc) · 8.68 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import tensorflow as tf
import numpy as np
from layers import *
from regularizers import *
from hyperparameters import *
from model_helpers import *
from data_loader import load_data
import time
config = tf.ConfigProto()
# Turn off this option if no gpu and remove device in encoder and decoder
config.gpu_options.allow_growth = True
tf.reset_default_graph()
d_train_x, d_train_y1, d_train_y2, d_test_x, d_test_y1, d_test_y2 = load_data()
##################################################################
# Define model
##################################################################
def encoder(x, z_dim, reuse=False):
with tf.device('/gpu:0'):
with tf.variable_scope('encoder') as en:
if reuse:
en.reuse_variables()
conv1 = conv2d_lrelu(x, 32, 4, 2)
pool1 = max_pool2d(conv1, [2, 2])
# drop1 = dropout(pool1)
conv2 = conv2d_lrelu(pool1, 64, 4, 2)
pool2 = max_pool2d(conv2, [2, 2])
# drop2 = dropout(pool2)
conv3 = conv2d_lrelu(pool2, 128, 4, 1)
pool3 = max_pool2d(conv3, [2,2])
conv4 = conv2d_lrelu(pool3, 256, 4, 1)
print(conv4)
flat_z = tf.reshape(conv4, [-1, np.prod(conv4.get_shape().as_list()[1:])])
fc1 = tf.contrib.layers.fully_connected(flat_z, 256, activation_fn=tf.nn.relu)
return tf.contrib.layers.fully_connected(fc1, z_dim * 2, activation_fn=tf.identity)
def decoder(z, reuse=False):
with tf.device('/gpu:0'):
with tf.variable_scope('decoder') as vs:
if reuse:
vs.reuse_variables()
fc2 = tf.contrib.layers.fully_connected(z, 512, activation_fn=lrelu)
fc3 = fc_relu(fc2, 2*2*256)
fc3 = tf.reshape(fc3, tf.stack([tf.shape(fc3)[0], 2, 2, 256]))
deconv1 = conv2d_t_relu(fc3, 256, 4, 2)
deconv2 = conv2d_t_relu(deconv1,128, 4, 2)
deconv3 = conv2d_t_relu(deconv2, 64, 4, 2)
deconv4 = conv2d_t_relu(deconv3, 32, 4, 2)
deconv5 = tf.contrib.layers.convolution2d_transpose(deconv4, 1, 4, 2,
weights_initializer=tf.contrib.layers.xavier_initializer(),
activation_fn=tf.identity)
return tf.nn.sigmoid(deconv5)
##################################################################
# Build the computation graph for training
##################################################################
train_x = tf.placeholder(tf.float32, shape=[None, 64, 64, 1])
train_y1 = tf.placeholder(tf.float32, shape=[None])
train_y2 = tf.placeholder(tf.float32, shape=[None])
train_z = push_forward(encoder, train_x)
train_xr = decoder(train_z)
# Build the computation graph for generating samples# Build
gen_z = tf.placeholder(tf.float32, shape=[None, z_dim])
gen_x = decoder(gen_z, reuse=True)
pretrained_mean, pretrained_var = tf.split(encoder(train_x, z_dim, reuse=True), num_or_size_splits=2, axis=1)
# Compare the generated z with true samples from a standard Gaussian, and compute their MMD distance
true_samples = tf.random_normal([batch_size, z_dim],stddev=Sigma)
loss_mmd = MMD(true_samples, train_z, kernel=K1, bandwidth=bandwidth1)
loss_nll = tf.reduce_mean(tf.square(train_xr - train_x))
hsic_signal = tf.placeholder(tf.bool) # placeholder for a HISC toggle
hsic_trigger = tf.cond(tf.equal(hsic_signal, tf.constant(True)), lambda: tf.constant(1, tf.float32), lambda: tf.constant(0, tf.float32))
# apply lambda2 on the dependent feature axis and discriminate all other axis with lambda3
first_axis_hsic = HSIC(gather_cols(train_z, [0]), train_y1, normalized=True)
second_axis_hsic = HSIC(gather_cols(train_z, [1]), train_y2, normalized=True)
# for HSIC with 1 side information
# other_axis_hsic = HSIC(gather_cols(train_z, list(range(1,z_dim))), train_y1, normalized=True)
other_axis_hsic = HSIC(gather_cols(train_z, list(range(2,z_dim))), train_y1, normalized=True) + HSIC(gather_cols(train_z, list(range(2,z_dim))), train_y2, normalized=True)
loss_hsic = Lambda2 * (first_axis_hsic + second_axis_hsic) - Lambda3 * other_axis_hsic
loss_hsic = hsic_trigger * loss_hsic
loss = loss_nll + Lambda1 * loss_mmd - loss_hsic
trainer = tf.train.AdamOptimizer(LEARN_RATE).minimize(loss)
##################################################################
# Start training session
##################################################################
sess = tf.Session(config=config)
sess.run(tf.global_variables_initializer())
mmd_list = []
o_loss_list = []
rec_loss_list = []
first_hisc_list = []
other_hisc_list = []
steps_list = []
# TODO implement tf saving model
# saver = tf.train.Saver()
tf.set_random_seed(1109)
# using median heuristic bandwidth and HSIC
start_time = time.time()
index_in_epoch = 0
for i in range(steps):
batch_x, batch_y1, batch_y2, index_in_epoch = next_batch(d_train_x, d_train_y1, d_train_y2, index_in_epoch, batch_size)
if index_in_epoch == 0:
d_train_x, d_train_y1, d_train_y2 = shuffle_data(d_train_x, d_train_y1, d_train_y2)
batch_x, batch_y1, batch_y2, index_in_epoch = next_batch(d_train_x, d_train_y1, d_train_y2, index_in_epoch, batch_size)
batch_x = batch_x.reshape(-1, 64, 64, 1)
use_hsic = False
if np.random.random() <= prob_to_hsic:
use_hsic = True
_, o_loss, nll, mmd, f_hsic, s_hsic, o_hsic, reconstr = sess.run([trainer, loss, loss_nll, loss_mmd, first_axis_hsic, second_axis_hsic, other_axis_hsic, train_xr], feed_dict={
train_x: batch_x, train_y1: batch_y1, train_y2: batch_y2, hsic_signal: use_hsic})
if i % 1000 == 0:
print("Using hsic:", use_hsic)
print("epoch: {}, Overall loss is {}, recon loss is {}, mmd loss is {}, f_hsic is {}, s_hsic is {}, other hsic is {}".format(
i, o_loss, nll, mmd, f_hsic, s_hsic, o_hsic))
elapsed_time = time.time() - start_time
print("time elapsed: {0:.2f}s".format(elapsed_time))
start_time = time.time()
# storing data for plot
mmd_list += [mmd]
o_loss_list += [o_loss]
rec_loss_list += [nll]
steps_list += [i]
# first_hisc_list += [f_hsic]
# other_hisc_list += [o_hsic]
if i % 5000 == 0:
# feed in test image to get generated mmd loss
test_x, test_y1, test_y2 = d_test_x[:batch_size], d_test_y1[:batch_size], d_test_y2[:batch_size]
test_x = test_x.reshape(-1, 64, 64, 1)
samples, gen_mmd, my_z= sess.run([gen_x, loss_mmd, pretrained_mean], feed_dict={gen_z: np.random.normal(size=(49, z_dim)), train_x: test_x})
plt.imshow(convert_to_display(samples), cmap='Greys_r', interpolation='nearest')
plt.grid()
plt.savefig('{}_steps.png'.format(i))
print("generated mmd loss: {}, my_z: {}".format(gen_mmd, my_z[0]))
##################################################################
# Generated data for Higgins disentanglement metrics
##################################################################
np.random.seed(200)
# generate sample images for height at first axis
all_y = []
all_x1 = []
all_x2 = []
y = 0
for i in range(500):
dep_axis = np.random.normal()
rd1 = np.random.normal(size=(1, z_dim-1))[0]
rd2 = np.random.normal(size=(1, z_dim-1))[0]
v1 = np.concatenate((np.array([dep_axis]), rd1))
v2 = np.concatenate((np.array([dep_axis]), rd2))
v_samples = sess.run(gen_x, feed_dict={gen_z: [v1, v2]})
sim1 = v_samples[0].reshape((64, 64))
sim2 = v_samples[1].reshape((64, 64))
all_x1.append(sim1)
all_y.append(y)
all_x2.append(sim2)
print('Finihsed generating for the first axis.')
# generate sample images for position_x at second axis
y = 1
for i in range(500):
# if i % 100 == 0:
# print(i)
dep_axis = np.random.normal()
rd1 = np.random.normal(size=(1, z_dim-1))[0]
rd2 = np.random.normal(size=(1, z_dim-1))[0]
v1 = np.concatenate((np.array([rd1[0]]), np.array([dep_axis]), rd1[1:]))
v2 = np.concatenate((np.array([rd1[0]]), np.array([dep_axis]), rd2[1:]))
v_samples = sess.run(gen_x, feed_dict={gen_z: [v1, v2]})
sim1 = v_samples[0].reshape((64, 64))
sim2 = v_samples[1].reshape((64, 64))
all_x1.append(sim1)
all_x2.append(sim2)
all_y.append(y)
print('Finihsed generating for the second axis.')
all_x1 = np.array(all_x1)
all_x2 = np.array(all_x2)
all_y = np.array(all_y)
print(all_x1.shape, all_x2.shape, all_y.shape)
np.savez("hisc_wae_{}_sample_metrics".format(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN), all_x1=all_x1, all_x2=all_x2, all_y=all_y)
x1_z = sess.run(pretrained_mean, feed_dict={train_x: all_x1.reshape(-1, 64, 64, 1)})
x2_z = sess.run(pretrained_mean, feed_dict={train_x: all_x2.reshape(-1, 64, 64, 1)})
diff = x2_z - x1_z
np.savez("hisc_wae_{}_diff_z".format(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN), diff_z=diff, all_y=all_y)