-
Notifications
You must be signed in to change notification settings - Fork 6
/
datasets.py
68 lines (53 loc) · 2.49 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
from torch.utils.data import Dataset
import h5py
import json
import os
import numpy as np
class CaptionDataset(Dataset):
"""
A PyTorch Dataset class to be used in a PyTorch DataLoader to create batches.
"""
def __init__(self, data_folder, data_name, split, transform=None):
"""
:param data_folder: folder where data files are stored
:param data_name: base name of processed datasets
:param split: split, one of 'TRAIN', 'VAL', or 'TEST'
:param transform: image transform pipeline
"""
self.split = split
assert self.split in {'TRAIN', 'VAL', 'TEST'}
# Open hdf5 file where images are stored
self.h = h5py.File(os.path.join(data_folder, self.split + '_IMAGES_' + data_name + '.hdf5'), 'r')
self.imgs = self.h['images']
# Captions per image
self.cpi = self.h.attrs['captions_per_image']
# Load encoded captions (completely into memory)
with open(os.path.join(data_folder, self.split + '_CAPTIONS_' + data_name + '.json'), 'r') as j:
self.captions = json.load(j)
# Load caption lengths (completely into memory)
with open(os.path.join(data_folder, self.split + '_CAPLENS_' + data_name + '.json'), 'r') as j:
self.caplens = json.load(j)
# Load labels
self.labels = np.load(os.path.join(data_folder, self.split + '_LABELS_' + data_name + '.npy'))
# PyTorch transformation pipeline for the image (normalizing, etc.)
self.transform = transform
# Total number of datapoints
self.dataset_size = len(self.captions)
def __getitem__(self, i):
# Remember, the Nth caption corresponds to the (N // captions_per_image)th image
img = torch.FloatTensor(self.imgs[i // self.cpi] / 255.)
if self.transform is not None:
img = self.transform(img)
caption = torch.LongTensor(self.captions[i])
caplen = torch.LongTensor([self.caplens[i]])
label = torch.FloatTensor(self.labels[i // self.cpi])
if self.split is 'TRAIN':
return img, caption, caplen, label
else:
# For validation of testing, also return all 'captions_per_image' captions to find BLEU-4 score
all_captions = torch.LongTensor(
self.captions[((i // self.cpi) * self.cpi):(((i // self.cpi) * self.cpi) + self.cpi)])
return img, caption, caplen, all_captions, label
def __len__(self):
return self.dataset_size