-
Notifications
You must be signed in to change notification settings - Fork 3
/
re-ranking.py
98 lines (85 loc) · 4.1 KB
/
re-ranking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#!/usr/bin/env python2/python3
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 26 14:46:56 2017
@author: luohao
Modified by Houjing Huang, 2017-12-22.
- This version accepts distance matrix instead of raw features.
- The difference of `/` division between python 2 and 3 is handled.
- numpy.float16 is replaced by numpy.float32 for numerical precision.
Modified by Zhedong Zheng, 2018-1-12.
- replace sort with topK, which save about 30s.
"""
"""
CVPR2017 paper:Zhong Z, Zheng L, Cao D, et al. Re-ranking Person Re-identification with k-reciprocal Encoding[J]. 2017.
url:http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhong_Re-Ranking_Person_Re-Identification_CVPR_2017_paper.pdf
Matlab version: https://github.com/zhunzhong07/person-re-ranking
"""
"""
API
q_g_dist: query-gallery distance matrix, numpy array, shape [num_query, num_gallery]
q_q_dist: query-query distance matrix, numpy array, shape [num_query, num_query]
g_g_dist: gallery-gallery distance matrix, numpy array, shape [num_gallery, num_gallery]
k1, k2, lambda_value: parameters, the original paper is (k1=20, k2=6, lambda_value=0.3)
Returns:
final_dist: re-ranked distance, numpy array, shape [num_query, num_gallery]
"""
import numpy as np
def k_reciprocal_neigh(initial_rank, i, k1):
forward_k_neigh_index = initial_rank[i,:k1+1]
backward_k_neigh_index = initial_rank[forward_k_neigh_index,:k1+1]
fi = np.where(backward_k_neigh_index==i)[0]
return forward_k_neigh_index[fi]
def re_ranking(q_g_dist, q_q_dist, g_g_dist, k1=20, k2=6, lambda_value=0.3):
# The following naming, e.g. gallery_num, is different from outer scope.
# Don't care about it.
original_dist = np.concatenate(
[np.concatenate([q_q_dist, q_g_dist], axis=1),
np.concatenate([q_g_dist.T, g_g_dist], axis=1)],
axis=0)
original_dist = 2. - 2 * original_dist #np.power(original_dist, 2).astype(np.float32)
original_dist = np.transpose(1. * original_dist/np.max(original_dist,axis = 0))
V = np.zeros_like(original_dist).astype(np.float32)
#initial_rank = np.argsort(original_dist).astype(np.int32)
# top K1+1
initial_rank = np.argpartition(original_dist, range(1,k1+1) )
query_num = q_g_dist.shape[0]
all_num = original_dist.shape[0]
for i in range(all_num):
# k-reciprocal neighbors
k_reciprocal_index = k_reciprocal_neigh(initial_rank, i, k1)
k_reciprocal_expansion_index = k_reciprocal_index
for j in range(len(k_reciprocal_index)):
candidate = k_reciprocal_index[j]
candidate_k_reciprocal_index = k_reciprocal_neigh( initial_rank, candidate, int(np.around(k1/2)))
if len(np.intersect1d(candidate_k_reciprocal_index,k_reciprocal_index))> 2./3*len(candidate_k_reciprocal_index):
k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index,candidate_k_reciprocal_index)
k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index)
weight = np.exp(-original_dist[i,k_reciprocal_expansion_index])
V[i,k_reciprocal_expansion_index] = 1.*weight/np.sum(weight)
original_dist = original_dist[:query_num,]
if k2 != 1:
V_qe = np.zeros_like(V,dtype=np.float32)
for i in range(all_num):
V_qe[i,:] = np.mean(V[initial_rank[i,:k2],:],axis=0)
V = V_qe
del V_qe
del initial_rank
invIndex = []
for i in range(all_num):
invIndex.append(np.where(V[:,i] != 0)[0])
jaccard_dist = np.zeros_like(original_dist,dtype = np.float32)
for i in range(query_num):
temp_min = np.zeros(shape=[1,all_num],dtype=np.float32)
indNonZero = np.where(V[i,:] != 0)[0]
indImages = []
indImages = [invIndex[ind] for ind in indNonZero]
for j in range(len(indNonZero)):
temp_min[0,indImages[j]] = temp_min[0,indImages[j]]+ np.minimum(V[i,indNonZero[j]],V[indImages[j],indNonZero[j]])
jaccard_dist[i] = 1-temp_min/(2.-temp_min)
final_dist = jaccard_dist*(1-lambda_value) + original_dist*lambda_value
del original_dist
del V
del jaccard_dist
final_dist = final_dist[:query_num,query_num:]
return final_dist