-
Notifications
You must be signed in to change notification settings - Fork 3
/
triplet_loss.py
447 lines (339 loc) · 17.3 KB
/
triplet_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 2 21:25:42 2019
@author: jbk48
"""
"""Define functions to create the triplet loss with online triplet mining."""
import tensorflow as tf
import numpy as np
from keras import backend as K
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import math_ops
def _pairwise_distances(embeddings, squared=False):
"""Compute the 2D matrix of distances between all the embeddings.
Args:
embeddings: tensor of shape (batch_size, embed_dim)
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
pairwise_distances: tensor of shape (batch_size, batch_size)
"""
# Get the dot product between all embeddings
# shape (batch_size, batch_size)
embeddings = K.l2_normalize(embeddings, axis = 1)
dot_product = tf.matmul(embeddings, tf.transpose(embeddings))
# Get squared L2 norm for each embedding. We can just take the diagonal of `dot_product`.
# This also provides more numerical stability (the diagonal of the result will be exactly 0).
# shape (batch_size,)
square_norm = tf.diag_part(dot_product)
# Compute the pairwise distance matrix as we have:
# ||a - b||^2 = ||a||^2 - 2 <a, b> + ||b||^2
# shape (batch_size, batch_size)
distances = tf.expand_dims(square_norm, 1) - 2.0 * dot_product + tf.expand_dims(square_norm, 0)
# Because of computation errors, some distances might be negative so we put everything >= 0.0
distances = tf.maximum(distances, 0.0)
if not squared:
# Because the gradient of sqrt is infinite when distances == 0.0 (ex: on the diagonal)
# we need to add a small epsilon where distances == 0.0
mask = tf.to_float(tf.equal(distances, 0.0))
distances = distances + mask * 1e-16
distances = tf.sqrt(distances)
# Correct the epsilon added: set the distances on the mask to be exactly 0.0
distances = distances * (1.0 - mask)
return distances
def _get_anchor_positive_triplet_mask(labels):
"""Return a 2D mask where mask[a, p] is True iff a and p are distinct and have same label.
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
Returns:
mask: tf.bool `Tensor` with shape [batch_size, batch_size]
"""
# Check that i and j are distinct
indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool)
indices_not_equal = tf.logical_not(indices_equal)
# Check if labels[i] == labels[j]
# Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1))
# Combine the two masks
mask = tf.logical_and(indices_not_equal, labels_equal)
return mask
def _get_anchor_negative_triplet_mask(labels):
"""Return a 2D mask where mask[a, n] is True iff a and n have distinct labels.
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
Returns:
mask: tf.bool `Tensor` with shape [batch_size, batch_size]
"""
# Check if labels[i] != labels[k]
# Uses broadcasting where the 1st argument has shape (1, batch_size) and the 2nd (batch_size, 1)
labels_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1))
mask = tf.logical_not(labels_equal)
return mask
def _get_triplet_mask(labels):
"""Return a 3D mask where mask[a, p, n] is True iff the triplet (a, p, n) is valid.
A triplet (i, j, k) is valid if:
- i, j, k are distinct
- labels[i] == labels[j] and labels[i] != labels[k]
Args:
labels: tf.int32 `Tensor` with shape [batch_size]
"""
# Check that i, j and k are distinct
indices_equal = tf.cast(tf.eye(tf.shape(labels)[0]), tf.bool)
indices_not_equal = tf.logical_not(indices_equal)
i_not_equal_j = tf.expand_dims(indices_not_equal, 2)
i_not_equal_k = tf.expand_dims(indices_not_equal, 1)
j_not_equal_k = tf.expand_dims(indices_not_equal, 0)
distinct_indices = tf.logical_and(tf.logical_and(i_not_equal_j, i_not_equal_k), j_not_equal_k)
# Check if labels[i] == labels[j] and labels[i] != labels[k]
label_equal = tf.equal(tf.expand_dims(labels, 0), tf.expand_dims(labels, 1))
i_equal_j = tf.expand_dims(label_equal, 2)
i_equal_k = tf.expand_dims(label_equal, 1)
valid_labels = tf.logical_and(i_equal_j, tf.logical_not(i_equal_k))
# Combine the two masks
mask = tf.logical_and(distinct_indices, valid_labels)
return mask
def batch_all_triplet_loss(labels, embeddings, margin=0.2, squared=False):
"""Build the triplet loss over a batch of embeddings.
We generate all the valid triplets and average the loss over the positive ones.
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
margin: margin for triplet loss
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
triplet_loss: scalar tensor containing the triplet loss
"""
# Get the pairwise distance matrix
pairwise_dist = _pairwise_distances(embeddings, squared=squared)
# shape (batch_size, batch_size, 1)
anchor_positive_dist = tf.expand_dims(pairwise_dist, 2)
assert anchor_positive_dist.shape[2] == 1, "{}".format(anchor_positive_dist.shape)
# shape (batch_size, 1, batch_size)
anchor_negative_dist = tf.expand_dims(pairwise_dist, 1)
assert anchor_negative_dist.shape[1] == 1, "{}".format(anchor_negative_dist.shape)
# Compute a 3D tensor of size (batch_size, batch_size, batch_size)
# triplet_loss[i, j, k] will contain the triplet loss of anchor=i, positive=j, negative=k
# Uses broadcasting where the 1st argument has shape (batch_size, batch_size, 1)
# and the 2nd (batch_size, 1, batch_size)
triplet_loss = anchor_positive_dist - anchor_negative_dist + margin
# Put to zero the invalid triplets
# (where label(a) != label(p) or label(n) == label(a) or a == p)
mask = _get_triplet_mask(labels)
mask = tf.to_float(mask)
triplet_loss = tf.multiply(mask, triplet_loss)
# Remove negative losses (i.e. the easy triplets)
triplet_loss = tf.maximum(triplet_loss, 0.0)
# Count number of positive triplets (where triplet_loss > 0)
valid_triplets = tf.to_float(tf.greater(triplet_loss, 1e-16))
num_positive_triplets = tf.reduce_sum(valid_triplets)
num_valid_triplets = tf.reduce_sum(mask)
fraction_positive_triplets = num_positive_triplets / (num_valid_triplets + 1e-16)
# Get final mean triplet loss over the positive valid triplets
triplet_loss = tf.reduce_sum(triplet_loss) / (num_positive_triplets + 1e-16)
return triplet_loss, fraction_positive_triplets
def batch_intra_loss(y_true, y_pred, squared=True):
pairwise_dist = _pairwise_distances(y_pred, squared=squared)
intra_loss = tf.reduce_mean(tf.maximum(pairwise_dist,0.01), axis=1)
return intra_loss
def batch_hard_triplet_loss(y_true, y_pred, margin=1.0, squared=True):
"""Build the triplet loss over a batch of embeddings.
For each anchor, we get the hardest positive and hardest negative to form a triplet.
Args:
labels: labels of the batch, of size (batch_size,)
embeddings: tensor of shape (batch_size, embed_dim)
margin: margin for triplet loss
squared: Boolean. If true, output is the pairwise squared euclidean distance matrix.
If false, output is the pairwise euclidean distance matrix.
Returns:
triplet_loss: scalar tensor containing the triplet loss
"""
# Get the pairwise distance matrix
pairwise_dist = _pairwise_distances(y_pred, squared=squared)
labels = tf.squeeze(y_true, axis=-1)
# For each anchor, get the hardest positive
# First, we need to get a mask for every valid positive (they should have same label)
mask_anchor_positive = _get_anchor_positive_triplet_mask(labels)
mask_anchor_positive = tf.to_float(mask_anchor_positive)
# We put to 0 any element where (a, p) is not valid (valid if a != p and label(a) == label(p))
anchor_positive_dist = tf.multiply(mask_anchor_positive, pairwise_dist)
# shape (batch_size, 1)
hardest_positive_dist = tf.reduce_max(anchor_positive_dist, axis=1)
## tf.summary.scalar("hardest_positive_dist", tf.reduce_mean(hardest_positive_dist))
# For each anchor, get the hardest negative
# First, we need to get a mask for every valid negative (they should have different labels)
mask_anchor_negative = _get_anchor_negative_triplet_mask(labels)
mask_anchor_negative = tf.to_float(mask_anchor_negative)
# We add the maximum value in each row to the invalid negatives (label(a) == label(n))
max_anchor_negative_dist = tf.reduce_max(pairwise_dist, axis=1, keepdims=True)
anchor_negative_dist = pairwise_dist + max_anchor_negative_dist * (1.0 - mask_anchor_negative)
# shape (batch_size,1)
hardest_negative_dist = tf.reduce_min(anchor_negative_dist, axis=1)
## tf.summary.scalar("hardest_negative_dist", tf.reduce_mean(hardest_negative_dist))
# Combine biggest d(a, p) and smallest d(a, n) into final triplet loss
triplet_loss = tf.maximum(hardest_positive_dist - hardest_negative_dist + margin, 0.0)
# Get final mean triplet loss
## triplet_loss = tf.reduce_mean(triplet_loss, axis=0)
return triplet_loss
def pairwise_distance(feature, squared=False):
"""Computes the pairwise distance matrix with numerical stability.
output[i, j] = || feature[i, :] - feature[j, :] ||_2
Args:
feature: 2-D Tensor of size [number of data, feature dimension].
squared: Boolean, whether or not to square the pairwise distances.
Returns:
pairwise_distances: 2-D Tensor of size [number of data, number of data].
"""
pairwise_distances_squared = math_ops.add(
math_ops.reduce_sum(math_ops.square(feature), axis=[1], keepdims=True),
math_ops.reduce_sum(
math_ops.square(array_ops.transpose(feature)),
axis=[0],
keepdims=True)) - 2.0 * math_ops.matmul(feature,
array_ops.transpose(feature))
# Deal with numerical inaccuracies. Set small negatives to zero.
pairwise_distances_squared = math_ops.maximum(pairwise_distances_squared, 0.0)
# Get the mask where the zero distances are at.
error_mask = math_ops.less_equal(pairwise_distances_squared, 0.0)
# Optionally take the sqrt.
if squared:
pairwise_distances = pairwise_distances_squared
else:
pairwise_distances = math_ops.sqrt(
pairwise_distances_squared + math_ops.to_float(error_mask) * 1e-16)
# Undo conditionally adding 1e-16.
pairwise_distances = math_ops.multiply(
pairwise_distances, math_ops.to_float(math_ops.logical_not(error_mask)))
num_data = array_ops.shape(feature)[0]
# Explicitly set diagonals to zero.
mask_offdiagonals = array_ops.ones_like(pairwise_distances) - array_ops.diag(
array_ops.ones([num_data]))
pairwise_distances = math_ops.multiply(pairwise_distances, mask_offdiagonals)
return pairwise_distances
def contrastive_loss(labels, embeddings_anchor, embeddings_positive,
margin=1.0):
"""Computes the contrastive loss.
This loss encourages the embedding to be close to each other for
the samples of the same label and the embedding to be far apart at least
by the margin constant for the samples of different labels.
See: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
Args:
labels: 1-D tf.int32 `Tensor` with shape [batch_size] of
binary labels indicating positive vs negative pair.
embeddings_anchor: 2-D float `Tensor` of embedding vectors for the anchor
images. Embeddings should be l2 normalized.
embeddings_positive: 2-D float `Tensor` of embedding vectors for the
positive images. Embeddings should be l2 normalized.
margin: margin term in the loss definition.
Returns:
contrastive_loss: tf.float32 scalar.
"""
# Get per pair distances
distances = math_ops.sqrt(
math_ops.reduce_sum(
math_ops.square(embeddings_anchor - embeddings_positive), 1))
# Add contrastive loss for the siamese network.
# label here is {0,1} for neg, pos.
return math_ops.reduce_mean(
math_ops.to_float(labels) * math_ops.square(distances) +
(1. - math_ops.to_float(labels)) *
math_ops.square(math_ops.maximum(margin - distances, 0.)),
name='contrastive_loss')
def masked_maximum(data, mask, dim=1):
"""Computes the axis wise maximum over chosen elements.
Args:
data: 2-D float `Tensor` of size [n, m].
mask: 2-D Boolean `Tensor` of size [n, m].
dim: The dimension over which to compute the maximum.
Returns:
masked_maximums: N-D `Tensor`.
The maximized dimension is of size 1 after the operation.
"""
axis_minimums = math_ops.reduce_min(data, dim, keepdims=True)
masked_maximums = math_ops.reduce_max(
math_ops.multiply(data - axis_minimums, mask), dim,
keepdims=True) + axis_minimums
return masked_maximums
def masked_minimum(data, mask, dim=1):
"""Computes the axis wise minimum over chosen elements.
Args:
data: 2-D float `Tensor` of size [n, m].
mask: 2-D Boolean `Tensor` of size [n, m].
dim: The dimension over which to compute the minimum.
Returns:
masked_minimums: N-D `Tensor`.
The minimized dimension is of size 1 after the operation.
"""
axis_maximums = math_ops.reduce_max(data, dim, keepdims=True)
masked_minimums = math_ops.reduce_min(
math_ops.multiply(data - axis_maximums, mask), dim,
keepdims=True) + axis_maximums
return masked_minimums
def triplet_semihard_loss(labels, embeddings, margin=1.0):
"""Computes the triplet loss with semi-hard negative mining.
The loss encourages the positive distances (between a pair of embeddings with
the same labels) to be smaller than the minimum negative distance among
which are at least greater than the positive distance plus the margin constant
(called semi-hard negative) in the mini-batch. If no such negative exists,
uses the largest negative distance instead.
See: https://arxiv.org/abs/1503.03832.
Args:
labels: 1-D tf.int32 `Tensor` with shape [batch_size] of
multiclass integer labels.
embeddings: 2-D float `Tensor` of embedding vectors. Embeddings should
be l2 normalized.
margin: Float, margin term in the loss definition.
Returns:
triplet_loss: tf.float32 scalar.
"""
# Reshape [batch_size] label tensor to a [batch_size, 1] label tensor.
labels = tf.squeeze(labels, axis=-1)
lshape = array_ops.shape(labels)
assert lshape.shape == 1
labels = array_ops.reshape(labels, [lshape[0], 1])
# Build pairwise squared distance matrix.
pdist_matrix = pairwise_distance(embeddings, squared=True)
# Build pairwise binary adjacency matrix.
adjacency = math_ops.equal(labels, array_ops.transpose(labels))
# Invert so we can select negatives only.
adjacency_not = math_ops.logical_not(adjacency)
batch_size = array_ops.size(labels)
# Compute the mask.
pdist_matrix_tile = array_ops.tile(pdist_matrix, [batch_size, 1])
mask = math_ops.logical_and(
array_ops.tile(adjacency_not, [batch_size, 1]),
math_ops.greater(
pdist_matrix_tile, array_ops.reshape(
array_ops.transpose(pdist_matrix), [-1, 1])))
mask_final = array_ops.reshape(
math_ops.greater(
math_ops.reduce_sum(
math_ops.cast(mask, dtype=dtypes.float32), 1, keepdims=True),
0.0), [batch_size, batch_size])
mask_final = array_ops.transpose(mask_final)
adjacency_not = math_ops.cast(adjacency_not, dtype=dtypes.float32)
mask = math_ops.cast(mask, dtype=dtypes.float32)
# negatives_outside: smallest D_an where D_an > D_ap.
negatives_outside = array_ops.reshape(
masked_minimum(pdist_matrix_tile, mask), [batch_size, batch_size])
negatives_outside = array_ops.transpose(negatives_outside)
# negatives_inside: largest D_an.
negatives_inside = array_ops.tile(
masked_maximum(pdist_matrix, adjacency_not), [1, batch_size])
semi_hard_negatives = array_ops.where(
mask_final, negatives_outside, negatives_inside)
loss_mat = math_ops.add(margin, pdist_matrix - semi_hard_negatives)
mask_positives = math_ops.cast(
adjacency, dtype=dtypes.float32) - array_ops.diag(
array_ops.ones([batch_size]))
# In lifted-struct, the authors multiply 0.5 for upper triangular
# in semihard, they take all positive pairs except the diagonal.
num_positives = math_ops.reduce_sum(mask_positives)
triplet_loss = math_ops.truediv(
math_ops.reduce_sum(
math_ops.maximum(
math_ops.multiply(loss_mat, mask_positives), 0.0),axis=1),
num_positives,
name='triplet_semihard_loss')
return triplet_loss