Skip to content

Commit a767327

Browse files
authored
Include n_gram_range examples
1 parent 60bf9e5 commit a767327

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

README.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ keywords = model.extract_keywords(doc)
9393
You can set `keyphrase_length` to set the length of the resulting keywords/keyphrases:
9494

9595
```python
96-
>>> model.extract_keywords(doc, keyphrase_length=1, stop_words=None)
96+
>>> model.extract_keywords(doc, keyphrase_ngram_range=(1, 1), stop_words=None)
9797
['learning',
9898
'training',
9999
'algorithm',
@@ -105,7 +105,7 @@ To extract keyphrases, simply set `keyphrase_length` to 2 or higher depending on
105105
of words you would like in the resulting keyphrases:
106106

107107
```python
108-
>>> model.extract_keywords(doc, keyphrase_length=2, stop_words=None)
108+
>>> model.extract_keywords(doc, keyphrase_ngram_range=(1, 2), stop_words=None)
109109
['learning algorithm',
110110
'learning machine',
111111
'machine learning',
@@ -126,7 +126,7 @@ Then, we take all top_n combinations from the 2 x top_n words and extract the co
126126
that are the least similar to each other by cosine similarity.
127127

128128
```python
129-
>>> model.extract_keywords(doc, keyphrase_length=3, stop_words='english',
129+
>>> model.extract_keywords(doc, keyphrase_ngram_range=(3, 3), stop_words='english',
130130
use_maxsum=True, nr_candidates=20, top_n=5)
131131
['set training examples',
132132
'generalize training data',
@@ -144,7 +144,7 @@ keywords / keyphrases which is also based on cosine similarity. The results
144144
with **high diversity**:
145145

146146
```python
147-
>>> model.extract_keywords(doc, keyphrase_length=3, stop_words='english', use_mmr=True, diversity=0.7)
147+
>>> model.extract_keywords(doc, keyphrase_ngram_range=(3, 3), stop_words='english', use_mmr=True, diversity=0.7)
148148
['algorithm generalize training',
149149
'labels unseen instances',
150150
'new examples optimal',
@@ -155,7 +155,7 @@ with **high diversity**:
155155
The results with **low diversity**:
156156

157157
```python
158-
>>> model.extract_keywords(doc, keyphrase_length=3, stop_words='english', use_mmr=True, diversity=0.2)
158+
>>> model.extract_keywords(doc, keyphrase_ngram_range=(3, 3), stop_words='english', use_mmr=True, diversity=0.2)
159159
['algorithm generalize training',
160160
'learning machine learning',
161161
'learning algorithm analyzes',

0 commit comments

Comments
 (0)