@@ -93,7 +93,7 @@ keywords = model.extract_keywords(doc)
93
93
You can set ` keyphrase_length ` to set the length of the resulting keywords/keyphrases:
94
94
95
95
``` python
96
- >> > model.extract_keywords(doc, keyphrase_length = 1 , stop_words = None )
96
+ >> > model.extract_keywords(doc, keyphrase_ngram_range = ( 1 , 1 ) , stop_words = None )
97
97
[' learning' ,
98
98
' training' ,
99
99
' algorithm' ,
@@ -105,7 +105,7 @@ To extract keyphrases, simply set `keyphrase_length` to 2 or higher depending on
105
105
of words you would like in the resulting keyphrases:
106
106
107
107
``` python
108
- >> > model.extract_keywords(doc, keyphrase_length = 2 , stop_words = None )
108
+ >> > model.extract_keywords(doc, keyphrase_ngram_range = ( 1 , 2 ) , stop_words = None )
109
109
[' learning algorithm' ,
110
110
' learning machine' ,
111
111
' machine learning' ,
@@ -126,7 +126,7 @@ Then, we take all top_n combinations from the 2 x top_n words and extract the co
126
126
that are the least similar to each other by cosine similarity.
127
127
128
128
``` python
129
- >> > model.extract_keywords(doc, keyphrase_length = 3 , stop_words = ' english' ,
129
+ >> > model.extract_keywords(doc, keyphrase_ngram_range = ( 3 , 3 ) , stop_words = ' english' ,
130
130
use_maxsum = True , nr_candidates = 20 , top_n = 5 )
131
131
[' set training examples' ,
132
132
' generalize training data' ,
@@ -144,7 +144,7 @@ keywords / keyphrases which is also based on cosine similarity. The results
144
144
with ** high diversity** :
145
145
146
146
``` python
147
- >> > model.extract_keywords(doc, keyphrase_length = 3 , stop_words = ' english' , use_mmr = True , diversity = 0.7 )
147
+ >> > model.extract_keywords(doc, keyphrase_ngram_range = ( 3 , 3 ) , stop_words = ' english' , use_mmr = True , diversity = 0.7 )
148
148
[' algorithm generalize training' ,
149
149
' labels unseen instances' ,
150
150
' new examples optimal' ,
@@ -155,7 +155,7 @@ with **high diversity**:
155
155
The results with ** low diversity** :
156
156
157
157
``` python
158
- >> > model.extract_keywords(doc, keyphrase_length = 3 , stop_words = ' english' , use_mmr = True , diversity = 0.2 )
158
+ >> > model.extract_keywords(doc, keyphrase_ngram_range = ( 3 , 3 ) , stop_words = ' english' , use_mmr = True , diversity = 0.2 )
159
159
[' algorithm generalize training' ,
160
160
' learning machine learning' ,
161
161
' learning algorithm analyzes' ,
0 commit comments