-
Notifications
You must be signed in to change notification settings - Fork 20
/
sdae.py
executable file
·361 lines (283 loc) · 19.3 KB
/
sdae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
'''
@author madhumita
'''
import os
os.environ['THEANO_FLAGS'] = "device=gpu1,floatX=float32"
os.environ['KERAS_BACKEND'] = "theano"
os.environ['PYTHONHASHSEED'] = '0'
import numpy as np
from keras.models import Model, Sequential
from keras.layers import Input
from keras.layers.core import Dense, Dropout
from keras.callbacks import EarlyStopping
from keras import backend as K
import nn_utils
class StackedDenoisingAE(object):
'''
Implements stacked denoising autoencoders in Keras, without tied weights.
To read up about the stacked denoising autoencoder, check the following paper:
Vincent, Pascal, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Manzagol.
"Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion."
Journal of Machine Learning Research 11, no. Dec (2010): 3371-3408.
'''
def __init__(self, n_layers = 1, n_hid = [500], dropout = [0.05], enc_act = ['sigmoid'], dec_act = ['linear'], bias = True, loss_fn = 'mse', batch_size = 32, nb_epoch = 300, optimizer = 'rmsprop', verbose = 1):
'''
Initializes parameters for stacked denoising autoencoders
@param n_layers: number of layers, i.e., number of autoencoders to stack on top of each other.
@param n_hid: list with the number of hidden nodes per layer. If only one value specified, same value is used for all the layers
@param dropout: list with the proportion of data_in nodes to mask at each layer. If only one value is provided, all the layers share the value.
@param enc_act: list with activation function for encoders at each layer. Typically sigmoid.
@param dec_act: list with activation function for decoders at each layer. Typically the same as encoder for binary data_in, linear for real data_in.
@param bias: True to use bias value.
@param loss_fn: The loss function. Typically 'mse' is used for real values. Options can be found here: https://keras.io/objectives/
@param batch_size: mini batch size for gradient update
@param nb_epoch: number of epochs to train each layer for
@param optimizer: The optimizer to use. Options can be found here: https://keras.io/optimizers/
@param verbose: 1 to be verbose
'''
self.n_layers = n_layers
#if only one value specified for n_hid, dropout, enc_act or dec_act, use the same parameters for all layers.
self.n_hid, self.dropout, self.enc_act, self.dec_act = self._assert_input(n_layers, n_hid, dropout, enc_act, dec_act)
self.bias = bias
self.loss_fn = loss_fn
self.batch_size = batch_size
self.nb_epoch = nb_epoch
self.optimizer = optimizer
self.verbose = verbose
def get_pretrained_sda(self, data_in, data_val, data_test, dir_out, get_enc_model = True, write_model = True, model_layers = None):
'''
Pretrains layers of a stacked denoising autoencoder to generate low-dimensional representation of data.
Returns a Sequential model with the Dropout layer and pretrained encoding layers added sequentially.
Optionally, we can return a list of pretrained sdae models by setting get_enc_model to False.
Additionally, returns dense representation of input, validation and test data.
This dense representation is the value of the hidden node of the last layer.
The cur_model be used in supervised task by adding a classification/regression layer on top,
or the dense pretrained data can be used as input of another cur_model.
@param data_in: input data (scipy sparse matrix supported)
@param data_val: validation data (scipy sparse matrix supported)
@param data_test: test data (scipy sparse matrix supported)
@param dir_out: output directory to write cur_model
@param get_enc_model: True to get a Sequential model with Dropout and encoding layers from SDAE.
If False, returns a list of all the encoding-decoding models within our stacked denoising autoencoder.
@param write_model: True to write cur_model to file
@param model_layers: Pretrained cur_model layers, to continue training pretrained model_layers, if required
'''
if model_layers is not None:
self.n_layers = len(model_layers)
else:
model_layers = [None]*self.n_layers
encoders = []
recon_mse = 0
for cur_layer in range(self.n_layers):
if model_layers[cur_layer] is None:
input_layer = Input(shape = (data_in.shape[1],))
# masking input data to learn to generalize, and prevent identity learning
dropout_layer = Dropout(self.dropout[cur_layer])
in_dropout = dropout_layer(input_layer)
encoder_layer = Dense(output_dim = self.n_hid[cur_layer], init = 'glorot_uniform', activation = self.enc_act[cur_layer], name = 'encoder'+str(cur_layer), bias = self.bias)
encoder = encoder_layer(in_dropout)
n_out = data_in.shape[1] #same no. of output units as input units (to reconstruct the signal)
decoder_layer = Dense(output_dim = n_out, bias = self.bias, init = 'glorot_uniform', activation = self.dec_act[cur_layer], name = 'decoder'+str(cur_layer))
decoder = decoder_layer(encoder)
cur_model = Model(input_layer, decoder)
cur_model.compile(loss = self.loss_fn, optimizer=self.optimizer)
# cur_model.summary()
else:
cur_model = model_layers[cur_layer]
print("Training layer "+ str(cur_layer))
#Early stopping to stop training when val loss increases for 1 epoch
early_stopping = EarlyStopping(monitor='val_loss', patience=1, verbose=0)
hist = cur_model.fit_generator(generator = nn_utils.batch_generator(
data_in, data_in,
batch_size = self.batch_size,
shuffle = True
),
callbacks = [early_stopping],
nb_epoch=self.nb_epoch,
samples_per_epoch = data_in.shape[0],
verbose=self.verbose,
validation_data = nn_utils.batch_generator(
data_val, data_val,
batch_size = self.batch_size,
shuffle = False),
nb_val_samples = data_val.shape[0]
)
print("Layer "+ str(cur_layer) +" has been trained")
model_layers[cur_layer] = cur_model
encoder_layer = cur_model.layers[-2]
encoders.append(encoder_layer)
if cur_layer == 0:
recon_mse = self._get_recon_error(cur_model, data_in, n_out = cur_model.layers[-1].output_shape[1])
data_in = self._get_intermediate_output(cur_model, data_in, n_layer = 2, train = 0, n_out = self.n_hid[cur_layer], batch_size = self.batch_size) #train = 0 because we do not want to use dropout to get hidden node value, since is a train-only behavior, used only to learn weights. output of second layer: hidden layer
assert data_in.shape[1] == self.n_hid[cur_layer], "Output of hidden layer not retrieved"
data_val = self._get_intermediate_output(cur_model, data_val, n_layer = 2, train = 0, n_out = self.n_hid[cur_layer], batch_size = self.batch_size) #get output of second layer (hidden layer) without dropout
data_test = self._get_intermediate_output(cur_model, data_test, n_layer = 2, train = 0, n_out = self.n_hid[cur_layer], batch_size = self.batch_size)
self._write_sda_config(dir_out)
if get_enc_model:
final_model = self._build_model_from_encoders(encoders, dropout_all = False)#, final_act_fn= final_act_fn)
if write_model:
nn_utils.save_model(final_model, out_dir = dir_out, f_arch = 'enc_layers.png', f_model = 'enc_layers.json', f_weights = 'enc_layers_weights.h5')
else:
final_model = model_layers
return final_model, (data_in, data_val, data_test), recon_mse
def _build_model_from_encoders(self, encoding_layers, dropout_all = False ):
'''
Builds a deep NN model that generates low-dimensional representation of input, based on pretrained layers.
@param encoding_layers: pretrained encoder layers
@param dropout_all: True to include dropout layer between all layers. By default, dropout is only present for input.
@return model with each encoding layer as a layer of a NN
'''
model = Sequential()
model.add(Dropout(self.dropout[0], input_shape = (encoding_layers[0].input_shape[1],)))
for i in range(len(encoding_layers)):
if i and dropout_all:
model.add(Dropout(self.dropout[i]))
encoding_layers[i].inbound_nodes = []
model.add(encoding_layers[i])
return model
def supervised_classification(self, model, x_train, x_val, y_train, y_val, x_test, y_test, n_classes, final_act_fn = 'softmax', loss = 'categorical_crossentropy', get_recon_error = False):
"""
Classification by finetuning a pretrained autoencoder model for a given task
"""
model.add(Dense(n_classes, activation=final_act_fn))
model.compile(loss = loss, optimizer=self.optimizer)
#Early stopping to stop training when val loss increses for 1 epoch
early_stopping = EarlyStopping(monitor='val_loss', patience=1, verbose=0)
hist = model.fit_generator(generator = nn_utils.batch_generator(x_train, y_train,
batch_size = self.batch_size,
shuffle = True,
n_classes=n_classes,
one_hot_labels= True),
samples_per_epoch = x_train.shape[0],
callbacks = [early_stopping],
nb_epoch=self.nb_epoch,
verbose=self.verbose,
validation_data = nn_utils.batch_generator(x_val, y_val,
batch_size = self.batch_size,
shuffle = False,
n_classes=n_classes,
one_hot_labels= True),
nb_val_samples = x_val.shape[0]
)
#get final hidden layer output of finetuned SDAE
final_train = self._get_intermediate_output(model, x_train, n_layer = -2, train = 0, n_out = model.layers[-2].output_shape[1], batch_size = self.batch_size)
final_val = self._get_intermediate_output(model, x_val, n_layer = -2, train = 0, n_out = model.layers[-2].output_shape[1], batch_size = self.batch_size)
if x_test is not None:
final_test = self._get_intermediate_output(model, x_test, n_layer = -2, train = 0, n_out = model.layers[-2].output_shape[1], batch_size = self.batch_size)
else:
final_test = None
#get reconstruction error of final nodes
if get_recon_error:
recon_mse = self._get_recon_error(model, x_train, n_out = n_classes)
else:
recon_mse = None
return model, (final_train, final_val, final_test), recon_mse
def evaluate_on_test(self, fit_model, x_test, y_test, n_classes, cfg):
"""
Evaluate a trained model on test dataset
Use this function only for the final evaluation, not for development
"""
fit_model.evaluate_generator(generator = nn_utils.batch_generator(x_test, y_test,
batch_size = self.batch_size,
shuffle = False,
one_hot_labels= True,
n_classes = n_classes),
samples = x_test.shape[0],
)
def predict(self, fit_model, x_test):
"""
Get prediction probability for each class for test data
@param fit_model: trained model
@param x_test: test data
"""
predictions = fit_model.predict_generator(generator = nn_utils.batch_generator(
x_test,
None,
batch_size = self.batch_size,
shuffle = False,
y_gen = False
),
val_samples = x_test.shape[0],
)
return predictions
def _write_sda_config(self, dir_out):
"""
Write the configuration of the autoencoder to a file
@param cur_sdae: autoencoder class
@param cfg: config object
"""
with open(dir_out + 'sdae_config.txt', 'w') as f:
f.write("Number of layers: " + str(self.n_layers))
f.write("\nHidden nodes: ")
for i in range(self.n_layers):
f.write(str(self.n_hid[i])+' ')
f.write("\nDropout: ")
for i in range(self.n_layers):
f.write(str(self.dropout[i])+' ')
f.write("\nEncoder activation: ")
for i in range(self.n_layers):
f.write(str(self.enc_act[i])+' ')
f.write("\nDecoder activation: ")
for i in range(self.n_layers):
f.write(str(self.dec_act[i])+' ')
f.write("\nEpochs: " + str(self.nb_epoch))
f.write("\nBias: " + str(self.bias))
f.write("\nLoss: " + str(self.loss_fn))
f.write("\nBatch size: " + str(self.batch_size))
f.write("\nOptimizer: " + str(self.optimizer))
def _assert_input(self, n_layers, n_hid, dropout, enc_act, dec_act):
'''
If the hidden nodes, dropout proportion, encoder activation function or decoder activation function is given, it uses the same parameter for all the layers.
Errors out if there is a size mismatch between number of layers and parameters for each layer.
'''
if len(n_hid) == 1:
n_hid = n_hid * n_layers
if len(dropout) == 1:
dropout = dropout * n_layers
if len(enc_act) == 1:
enc_act = enc_act * n_layers
if len(dec_act) == 1:
dec_act = dec_act * n_layers
assert (n_layers == len(n_hid) == len(dropout) == len(enc_act) == len(dec_act)), "Please specify as many hidden nodes, dropout proportion on input, and encoder and decoder activation function, as many layers are there, using list data structure"
return n_hid, dropout, enc_act, dec_act
def _get_intermediate_output(self, model, data_in, n_layer, train, n_out, batch_size, dtype = np.float32):
'''
Returns output of a given intermediate layer in a model
@param model: model to get output from
@param data_in: sparse representation of input data
@param n_layer: the layer number for which output is required
@param train: (0/1) 1 to use training config, like dropout noise.
@param n_out: number of output nodes in the given layer (pre-specify so as to use generator function with sparse matrix to get layer output)
@param batch_size: the num of instances to convert to dense at a time
@return value of intermediate layer
'''
data_out = np.zeros(shape = (data_in.shape[0],n_out))
x_batch_gen = nn_utils.x_generator(data_in, batch_size = batch_size, shuffle = False)
stop_iter = int(np.ceil(data_in.shape[0]/batch_size))
for i in range(stop_iter):
cur_batch, cur_batch_idx = next(x_batch_gen)
data_out[cur_batch_idx,:] = self._get_nth_layer_output(model, n_layer, X = cur_batch, train = train)
return data_out.astype(dtype, copy = False)
def _get_nth_layer_output(self, model, n_layer, X, train = 1):
'''
Returns output of nth layer in a given model.
@param model: keras model to get an intermediate value out of
@param n_layer: the layer number to get the value of
@param X: input data for which layer value should be computed and returned.
@param train: (1/0): 1 to use the same setting as training (for example, with Dropout, etc.), 0 to use the same setting as testing phase for the model.
@return the value of n_layer in the given model, input, and setting
'''
get_nth_layer_output = K.function([model.layers[0].input, K.learning_phase()],
[model.layers[n_layer].output])
return get_nth_layer_output([X,train])[0]
def _get_recon_error(self, model, data_in, n_out):
"""
Return reconstruction squared error at individual nodes, averaged across all instances.
@param model: trained model
@param data_in: input data to reconstruct
@param n_out: number of model output nodes
"""
train_recon = self._get_intermediate_output(model, data_in, n_layer = -1, train = 0, n_out = n_out, batch_size = self.batch_size) #train = 0 because we do not want to use dropout to get hidden node value, since is a train-only behavior, used only to learn weights. output of third layer: output layer
recon_mse = np.mean(np.square(train_recon - data_in), axis = 0)
recon_mse = np.ravel(recon_mse)
return recon_mse