-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_generate_random_values.py
67 lines (49 loc) · 1.89 KB
/
test_generate_random_values.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import unittest
from criteria_mendelian_randomization import Criteria
# Create an instance of the Criteria class
criteria_obj = Criteria([0,10],100,"uniform")
# Call the generate_random_values subroutine
#random_values = criteria_obj.generate_random_values()
# Use the generated random values as needed
#print(random_values)
class TestGenerateRandomValues(unittest.TestCase):
def test_uniform_distribution(self):
print("Hello uniform")
criteria_obj.distribution_type="uniform"
values = criteria_obj.generate_random_values()
print (values)
self.assertEqual(len(values), 100)
for value in values:
self.assertGreaterEqual(value, 0)
self.assertLessEqual(value, 10)
def test_normal_distribution(self):
print("Hello normal")
criteria_obj.distribution_type="normal"
values = criteria_obj.generate_random_values()
print (values)
self.assertEqual(len(values), 100)
def test_binomial_distribution(self):
print("Hello binomial")
criteria_obj.distribution_type="binomial"
values = criteria_obj.generate_random_values()
print (values)
self.assertEqual(len(values), 100)
def test_poisson_distribution(self):
print("Hello poisson")
criteria_obj.distribution_type="poisson"
values = criteria_obj.generate_random_values()
print (values)
self.assertEqual(len(values), 100)
def test_bayesian_distribution(self):
print("Hello bayesian")
criteria_obj.distribution_type="bayesian"
values = criteria_obj.generate_random_values()
print (values)
self.assertEqual(len(values), 100)
#print ("PASS Bayesian ", values)
if __name__ == '__main__':
print("Starting tests")
unittest.main()
else:
print("Something failed, please run this as the main program")
print (__name__)