-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathdataset.py
61 lines (51 loc) · 1.93 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# -*- coding: utf-8 -*-
# @Author : Magic
# @Time : 2019/7/5 10:23
# @File : dataset.py
import torch
import glob
from torch.utils.data import Dataset,DataLoader
from torchvision import transforms
from config import config_dict
from utils import map_label
from PIL import Image
import cv2
class SenseData(Dataset):
def __init__(self, img_dir, transform = None):
super(SenseData, self).__init__()
self.img_list = glob.glob(img_dir+'/*/*.jpg')
self.transform = transform
def __len__(self):
return len(self.img_list)
def __getitem__(self, index):
img = self.img_list[index]
_, label_map = map_label(config_dict['name_to_id'])
img_label = label_map[img.split('/')[2]]
img = Image.open(img)
if self.transform:
img = self.transform(img)
return img, torch.Tensor([int(img_label)-1])
class SenseDataTest(Dataset):
def __init__(self, img_dir, transform = None):
super(SenseDataTest, self).__init__()
self.img_list = sorted(glob.glob(img_dir+'/*.jpg'))
self.transform = transform
def __len__(self):
return len(self.img_list)
def __getitem__(self, index):
img = self.img_list[index]
filedir=img
img = Image.open(img)
if self.transform:
img = self.transform(img)
return index, filedir, img
if __name__ == '__main__':
# train_data = SenseData(config_dict['data_dir_train'], None)
# train_loader = DataLoader(train_data, batch_size=4, shuffle=False, num_workers=1)
# for i, batch in enumerate(train_loader):
# print(batch[0], batch[1])
test_data = SenseDataTest(config_dict['data_dir_test'], transforms.Compose([transforms.Resize(224, interpolation=2),transforms.ToTensor()]))
test_loader = DataLoader(test_data, batch_size=1, shuffle=False, num_workers=1)
for i, batch in enumerate(test_loader):
print(batch.shape)
break