-
Notifications
You must be signed in to change notification settings - Fork 54
/
Copy pathtrain.py
59 lines (47 loc) · 2.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from math import ceil
import tensorflow as tf
from net.network import model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import ModelCheckpoint
from generator import train_generator, valid_generator
def loss_function_1(y_true, y_pred):
""" Probabilistic output loss """
a = tf.clip_by_value(y_pred, 1e-20, 1)
b = tf.clip_by_value(tf.subtract(1.0, y_pred), 1e-20, 1)
cross_entropy = - tf.multiply(y_true, tf.math.log(a)) - tf.multiply(tf.subtract(1.0, y_true), tf.math.log(b))
cross_entropy = tf.reduce_mean(cross_entropy, 0)
loss = tf.reduce_mean(cross_entropy)
return loss
def loss_function_2(y_true, y_pred):
""" Positional output loss """
square_diff = tf.math.squared_difference(y_true, y_pred)
mask = tf.not_equal(y_true, 0)
mask = tf.cast(mask, tf.float32)
square_diff = tf.multiply(square_diff, mask)
square_diff = tf.reduce_mean(square_diff, 1)
square_diff = tf.reduce_mean(square_diff, 0)
loss = tf.reduce_mean(square_diff)
return loss
# Creating the model
model = model()
model.summary()
# Compile
adam = Adam(lr=1e-5, beta_1=0.9, beta_2=0.999, epsilon=1e-10, decay=0.0)
loss_function = {"prob_output": loss_function_1, "pos_output": loss_function_2}
model.compile(optimizer=adam, loss=loss_function, metrics=None)
# Train
epochs = 10
batch_size = 256
train_set_size = 25090
valid_set_size = 1317
training_steps_per_epoch = ceil(train_set_size / batch_size)
validation_steps_per_epoch = ceil(valid_set_size / batch_size)
train_gen = train_generator(batch_size=batch_size)
val_gen = valid_generator(batch_size=batch_size)
checkpoints = ModelCheckpoint('weights/weights_{epoch:03d}.h5', save_weights_only=True, save_freq=1)
history = model.fit(train_gen, steps_per_epoch=training_steps_per_epoch, epochs=epochs, verbose=1,
validation_data=val_gen, validation_steps=validation_steps_per_epoch,
callbacks=[checkpoints], shuffle=True, max_queue_size=512)
with open('weights/history.txt', 'a+') as f:
print(history.history, file=f)
print('All Done!')