This repository is maintained by Carlos Hernández-Oliván(carloshero@unizar.es) and it presents the State of the Art of Music Generation. Most of these references (previous to 2022) are included in the review paper "Music Composition with Deep Learning: A Review". The authors of the paper want to thank Jürgen Schmidhuber for his suggestions.
Make a pull request if you want to contribute to this references list.
You can download a PDF version of this repo here: README.pdf
All the images belong to their corresponding authors.
Hild, H., Feulner, J., & Menzel, W. (1992). HARMONET: A neural net for harmonizing chorales in the style of JS Bach. In Advances in neural information processing systems (pp. 267-274). Paper
-
Westergaard, P. (1959). Experimental Music. Composition with an Electronic Computer.
-
Todd, P. M. (1989). A connectionist approach to algorithmic composition. Computer Music Journal, 13(4), 27-43.
-
Cope, D. (2000). The algorithmic composer (Vol. 16). AR Editions, Inc..
-
Nierhaus, G. (2009). Algorithmic composition: paradigms of automated music generation. Springer Science & Business Media.
-
Müller, M. (2015). Fundamentals of music processing: Audio, analysis, algorithms, applications. Springer.
-
McLean, A., & Dean, R. T. (Eds.). (2018). The Oxford handbook of algorithmic music. Oxford University Press.
NN Architecture | Year | Authors | Link to original paper | Slides |
---|---|---|---|---|
Long Short-Term Memory (LSTM) | 1997 | Sepp Hochreiter, Jürgen Schmidhuber | http://www.bioinf.jku.at/publications/older/2604.pdf | LSTM.pdf |
Convolutional Neural Network (CNN) | 1998 | Yann LeCun, Léon Bottou, YoshuaBengio, Patrick Haffner | http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf | |
Variational Auto Encoder (VAE) | 2013 | Diederik P. Kingma, Max Welling | https://arxiv.org/pdf/1312.6114.pdf | |
Generative Adversarial Networks (GAN) | 2014 | Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio | https://arxiv.org/pdf/1406.2661.pdf | |
Transformer | 2017 | Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin | https://arxiv.org/pdf/1706.03762.pdf | |
Diffusion Models | 2015 | Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli | https://arxiv.org/abs/1503.03585 |
Qin, Y., Xie, H., Ding, S., Tan, B., Li, Y., Zhao, B., & Ye, M. (2022). Bar transformer: a hierarchical model for learning long-term structure and generating impressive pop music. Applied Intelligence, 1-19.
Liu, J., Dong, Y., Cheng, Z., Zhang, X., Li, X., Yu, F., & Sun, M. (2022). Symphony Generation with Permutation Invariant Language Model. arXiv preprint arXiv:2205.05448.
von Rütte, D., Biggio, L., Kilcher, Y., & Hoffman, T. (2022). FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control. arXiv preprint arXiv:2201.10936.
Shih, Y. J., Wu, S. L., Zalkow, F., Muller, M., & Yang, Y. H. (2022). Theme Transformer: Symbolic Music Generation with Theme-Conditioned Transformer. IEEE Transactions on Multimedia.
Yu, Y., Srivastava, A., & Canales, S. (2021). Conditional lstm-gan for melody generation from lyrics. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(1), 1-20.
Mittal, G., Engel, J., Hawthorne, C., & Simon, I. (2021). Symbolic music generation with diffusion models. arXiv preprint arXiv:2103.16091.
Wang, Z., Wang, D., Zhang, Y., & Xia, G. (2020). Learning interpretable representation for controllable polyphonic music generation. arXiv preprint arXiv:2008.07122.
Ens, J., & Pasquier, P. (2020). Mmm: Exploring conditional multi-track music generation with the transformer. arXiv preprint arXiv:2008.06048.
Paper Web Colab Github (AI Guru)
Wu, X., Wang, C., & Lei, Q. (2020). Transformer-XL Based Music Generation with Multiple Sequences of Time-valued Notes. arXiv preprint arXiv:2007.07244.
Jiang, J., Xia, G. G., Carlton, D. B., Anderson, C. N., & Miyakawa, R. H. (2020, May). Transformer vae: A hierarchical model for structure-aware and interpretable music representation learning. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 516-520). IEEE.
Peracha, O. (2019). Improving polyphonic music models with feature-rich encoding. arXiv preprint arXiv:1911.11775.
Donahue, C., Mao, H. H., Li, Y. E., Cottrell, G. W., & McAuley, J. (2019). LakhNES: Improving multi-instrumental music generation with cross-domain pre-training. arXiv preprint arXiv:1907.04868.
Wang, Z., Ma, Y., Liu, Z., & Tang, J. (2019). R-transformer: Recurrent neural network enhanced transformer. arXiv preprint arXiv:1907.05572.
Huang, C. Z. A., Cooijmans, T., Roberts, A., Courville, A., & Eck, D. (2019). Counterpoint by convolution. arXiv preprint arXiv:1903.07227.
Huang, C. Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, et al. (2018). Music transformer. arXiv preprint arXiv:1809.04281.
Lattner, S., Grachten, M., & Widmer, G. (2018). Imposing higher-level structure in polyphonic music generation using convolutional restricted boltzmann machines and constraints. Journal of Creative Music Systems, 2, 1-31.
Roberts, A., Engel, J., Raffel, C., Hawthorne, C., & Eck, D. (2018, July). A hierarchical latent vector model for learning long-term structure in music. In International Conference on Machine Learning (pp. 4364-4373). PMLR.
Web Paper Code Google Colab Explanation
Herremans, D., & Chew, E. (2017). MorpheuS: generating structured music with constrained patterns and tension. IEEE Transactions on Affective Computing, 10(4), 510-523.
Lee, S. G., Hwang, U., Min, S., & Yoon, S. (2017). Polyphonic music generation with sequence generative adversarial networks. arXiv preprint arXiv:1710.11418.
Liang, F. T., Gotham, M., Johnson, M., & Shotton, J. (2017, October). Automatic Stylistic Composition of Bach Chorales with Deep LSTM. In ISMIR (pp. 449-456).
Paper Liang Master Thesis 2016
Dong, H. W., Hsiao, W. Y., Yang, L. C., & Yang, Y. H. (2018, April). Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1).
Johnson, D. D. (2017, April). Generating polyphonic music using tied parallel networks. In International conference on evolutionary and biologically inspired music and art (pp. 128-143). Springer, Cham.
Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C., Farias, P. L. C., & Aspuru-Guzik, A. (2017). Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. arXiv preprint arXiv:1705.10843.
Yang, L. C., Chou, S. Y., & Yang, Y. H. (2017). MidiNet: A convolutional generative adversarial network for symbolic-domain music generation. arXiv preprint arXiv:1703.10847.
Hadjeres, G., Pachet, F., & Nielsen, F. (2017, July). Deepbach: a steerable model for bach chorales generation. In International Conference on Machine Learning (pp. 1362-1371). PMLR.
Jaques, N., Gu, S., Turner, R. E., & Eck, D. (2016). Generating music by fine-tuning recurrent neural networks with reinforcement learning.
Mogren, O. (2016). C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv preprint arXiv:1611.09904.
Yu, L., Zhang, W., Wang, J., & Yu, Y. (2017, February). Seqgan: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).
Eck, D., & Schmidhuber, J. (2002, September). Finding temporal structure in music: Blues improvisation with LSTM recurrent networks. In Proceedings of the 12th IEEE workshop on neural networks for signal processing (pp. 747-756). IEEE.
Mozer, M. C. (1994). Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing. Connection Science, 6(2-3), 247-280.
- Briot, J. P., Hadjeres, G., & Pachet, F. (2020). Deep learning techniques for music generation (pp. 1-249). Springer.
-
Hernandez-Olivan, C., & Beltran, J. R. (2021). Music composition with deep learning: A review. arXiv preprint arXiv:2108.12290. Paper
-
Ji, S., Luo, J., & Yang, X. (2020). A Comprehensive Survey on Deep Music Generation: Multi-level Representations, Algorithms, Evaluations, and Future Directions. arXiv preprint arXiv:2011.06801. Paper
-
Briot, J. P., Hadjeres, G., & Pachet, F. D. (2017). Deep learning techniques for music generation--a survey. arXiv preprint arXiv:1709.01620. Paper
Pasini, M., & Schlüter, J. (2022). Musika! Fast Infinite Waveform Music Generation. arXiv preprint arXiv:2208.08706.
Caillon, A., & Esling, P. (2021). RAVE: A variational autoencoder for fast and high-quality neural audio synthesis. arXiv preprint arXiv:2111.05011.
-
JSB Chorales Dataset Web
-
Maestro Dataset Web
-
The Lakh MIDI Dataset v0.1 Web Tutorial IPython
-
International Society for Music Information Retrieval (ISMIR) Web
-
IEEE Signal Processing (ICASSP) Web
-
ELSEVIER Signal Processing Journal Web
-
Association for the Advancement of Artificial Intelligence (AAAI) Web
-
Journal of Artificial Intelligence Research (JAIR) Web
-
International Joint Conferences on Artificial Intelligence (IJCAI) Web
-
International Conference on Learning Representations (ICLR) Web
-
IET Signal Processing Journal Web
-
Journal of New Music Research (JNMR) Web
-
Audio Engineering Society - Conference on Semantic Audio (AES) Web
-
International Conference on Digital Audio Effects (DAFx) Web
-
David Cope Web
-
Colin Raffel Web
-
Jesse Engel Web
-
Douglas Eck Web
-
Anna Huang Web
-
François Pachet Web
-
Jeff Ens Web
-
Philippe Pasquier Web
-
Google Magenta Web
-
Audiolabs Erlangen Web
-
Music Informatics Group Web
-
Music and Artificial Intelligence Lab Web
-
Metacreation Lab Web
-
AIVA (paid) Web
-
Amper Music (paid) Web
-
Ecrett Music (paid) Web
-
Humtap (free, iOS) Web
-
Amadeus Code (free/paid, iOS) Web
-
Computoser (free) Web
-
Brain.fm (paid) Web
- Bustena (web in spanish to learn harmony theory) Web