Skip to content

Latest commit

 

History

History
530 lines (255 loc) · 24.3 KB

README.md

File metadata and controls

530 lines (255 loc) · 24.3 KB

DEEP LEARNING FOR MUSIC GENERATION

This repository is maintained by Carlos Hernández-Oliván(carloshero@unizar.es) and it presents the State of the Art of Music Generation. Most of these references (previous to 2022) are included in the review paper "Music Composition with Deep Learning: A Review". The authors of the paper want to thank Jürgen Schmidhuber for his suggestions.

License

Make a pull request if you want to contribute to this references list.

You can download a PDF version of this repo here: README.pdf

All the images belong to their corresponding authors.

Table of Contents

  1. Algorithmic Composition

  2. Neural Network Architectures

  3. Deep Learning Models for Symbolic Music Generation

  4. Deep Learning Models for Audio Music Generation

  5. Datasets

  6. Journals and Conferences

  7. Authors

  8. Research Groups and Labs

  9. Apps for Music Generation with AI

  10. Other Resources

2. Algorithmic Composition

1992

HARMONET

Hild, H., Feulner, J., & Menzel, W. (1992). HARMONET: A neural net for harmonizing chorales in the style of JS Bach. In Advances in neural information processing systems (pp. 267-274). Paper

Books

  • Westergaard, P. (1959). Experimental Music. Composition with an Electronic Computer.

  • Todd, P. M. (1989). A connectionist approach to algorithmic composition. Computer Music Journal, 13(4), 27-43.

  • Cope, D. (2000). The algorithmic composer (Vol. 16). AR Editions, Inc..

  • Nierhaus, G. (2009). Algorithmic composition: paradigms of automated music generation. Springer Science & Business Media.

  • Müller, M. (2015). Fundamentals of music processing: Audio, analysis, algorithms, applications. Springer.

  • McLean, A., & Dean, R. T. (Eds.). (2018). The Oxford handbook of algorithmic music. Oxford University Press.

2. Neural Network Architectures

NN Architecture Year Authors Link to original paper Slides
Long Short-Term Memory (LSTM) 1997 Sepp Hochreiter, Jürgen Schmidhuber http://www.bioinf.jku.at/publications/older/2604.pdf LSTM.pdf
Convolutional Neural Network (CNN) 1998 Yann LeCun, Léon Bottou, YoshuaBengio, Patrick Haffner http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf
Variational Auto Encoder (VAE) 2013 Diederik P. Kingma, Max Welling https://arxiv.org/pdf/1312.6114.pdf
Generative Adversarial Networks (GAN) 2014 Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio https://arxiv.org/pdf/1406.2661.pdf
Transformer 2017 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin https://arxiv.org/pdf/1706.03762.pdf
Diffusion Models 2015 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli https://arxiv.org/abs/1503.03585

3. Deep Learning Models for Music Generation

2022

Bar Transformer

Qin, Y., Xie, H., Ding, S., Tan, B., Li, Y., Zhao, B., & Ye, M. (2022). Bar transformer: a hierarchical model for learning long-term structure and generating impressive pop music. Applied Intelligence, 1-19.

Paper

Symphony Generation with Permutation Invariant Language Model

Liu, J., Dong, Y., Cheng, Z., Zhang, X., Li, X., Yu, F., & Sun, M. (2022). Symphony Generation with Permutation Invariant Language Model. arXiv preprint arXiv:2205.05448.

Paper Code Samples

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

von Rütte, D., Biggio, L., Kilcher, Y., & Hoffman, T. (2022). FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control. arXiv preprint arXiv:2201.10936.

Paper

Theme Transfomer

Shih, Y. J., Wu, S. L., Zalkow, F., Muller, M., & Yang, Y. H. (2022). Theme Transformer: Symbolic Music Generation with Theme-Conditioned Transformer. IEEE Transactions on Multimedia.

Paper GitHub

2021

Melody Generation from Lyrics

Yu, Y., Srivastava, A., & Canales, S. (2021). Conditional lstm-gan for melody generation from lyrics. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(1), 1-20.

Paper

Music Generation with Diffusion Models

Mittal, G., Engel, J., Hawthorne, C., & Simon, I. (2021). Symbolic music generation with diffusion models. arXiv preprint arXiv:2103.16091.

Paper GitHub

2020

Controllable Polyphonic Music Generation

Wang, Z., Wang, D., Zhang, Y., & Xia, G. (2020). Learning interpretable representation for controllable polyphonic music generation. arXiv preprint arXiv:2008.07122.

Paper Web Video

MMM: Multitrack Music Generation

Ens, J., & Pasquier, P. (2020). Mmm: Exploring conditional multi-track music generation with the transformer. arXiv preprint arXiv:2008.06048.

Paper Web Colab Github (AI Guru)

Transformer-XL

Wu, X., Wang, C., & Lei, Q. (2020). Transformer-XL Based Music Generation with Multiple Sequences of Time-valued Notes. arXiv preprint arXiv:2007.07244.

Paper

Transformer VAE

Jiang, J., Xia, G. G., Carlton, D. B., Anderson, C. N., & Miyakawa, R. H. (2020, May). Transformer vae: A hierarchical model for structure-aware and interpretable music representation learning. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 516-520). IEEE.

Paper

2019

TonicNet

Peracha, O. (2019). Improving polyphonic music models with feature-rich encoding. arXiv preprint arXiv:1911.11775.

Paper

LakhNES

Donahue, C., Mao, H. H., Li, Y. E., Cottrell, G. W., & McAuley, J. (2019). LakhNES: Improving multi-instrumental music generation with cross-domain pre-training. arXiv preprint arXiv:1907.04868.

Paper

R-Transformer

Wang, Z., Ma, Y., Liu, Z., & Tang, J. (2019). R-transformer: Recurrent neural network enhanced transformer. arXiv preprint arXiv:1907.05572.

Paper

Maia Music Generator

Web

Coconet: Counterpoint by Convolution

Huang, C. Z. A., Cooijmans, T., Roberts, A., Courville, A., & Eck, D. (2019). Counterpoint by convolution. arXiv preprint arXiv:1903.07227.

Paper Web

2018

Music Transformer - Google Magenta

Huang, C. Z. A., Vaswani, A., Uszkoreit, J., Shazeer, N., Simon, I., Hawthorne, et al. (2018). Music transformer. arXiv preprint arXiv:1809.04281.

Web Poster Paper

Imposing Higher-level Structure in Polyphonic Music

Lattner, S., Grachten, M., & Widmer, G. (2018). Imposing higher-level structure in polyphonic music generation using convolutional restricted boltzmann machines and constraints. Journal of Creative Music Systems, 2, 1-31.

Paper

MusicVAE - Google Magenta

Roberts, A., Engel, J., Raffel, C., Hawthorne, C., & Eck, D. (2018, July). A hierarchical latent vector model for learning long-term structure in music. In International Conference on Machine Learning (pp. 4364-4373). PMLR.

Web Paper Code Google Colab Explanation

2017

MorpheuS

Herremans, D., & Chew, E. (2017). MorpheuS: generating structured music with constrained patterns and tension. IEEE Transactions on Affective Computing, 10(4), 510-523.

Paper

Polyphonic GAN

Lee, S. G., Hwang, U., Min, S., & Yoon, S. (2017). Polyphonic music generation with sequence generative adversarial networks. arXiv preprint arXiv:1710.11418.

Paper

BachBot - Microsoft

Liang, F. T., Gotham, M., Johnson, M., & Shotton, J. (2017, October). Automatic Stylistic Composition of Bach Chorales with Deep LSTM. In ISMIR (pp. 449-456).

Paper Liang Master Thesis 2016

MuseGAN

Dong, H. W., Hsiao, W. Y., Yang, L. C., & Yang, Y. H. (2018, April). Musegan: Multi-track sequential generative adversarial networks for symbolic music generation and accompaniment. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 32, No. 1).

Web Paper Poster GitHub

Composing Music with LSTM

Johnson, D. D. (2017, April). Generating polyphonic music using tied parallel networks. In International conference on evolutionary and biologically inspired music and art (pp. 128-143). Springer, Cham.

Paper Web GitHub Blog

ORGAN

Guimaraes, G. L., Sanchez-Lengeling, B., Outeiral, C., Farias, P. L. C., & Aspuru-Guzik, A. (2017). Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models. arXiv preprint arXiv:1705.10843.

Paper

MidiNet

Yang, L. C., Chou, S. Y., & Yang, Y. H. (2017). MidiNet: A convolutional generative adversarial network for symbolic-domain music generation. arXiv preprint arXiv:1703.10847.

Paper

2016

DeepBach

Hadjeres, G., Pachet, F., & Nielsen, F. (2017, July). Deepbach: a steerable model for bach chorales generation. In International Conference on Machine Learning (pp. 1362-1371). PMLR.

Web Paper Code

Fine-Tuning with RL

Jaques, N., Gu, S., Turner, R. E., & Eck, D. (2016). Generating music by fine-tuning recurrent neural networks with reinforcement learning.

Paper

C-RNN-GAN

Mogren, O. (2016). C-RNN-GAN: Continuous recurrent neural networks with adversarial training. arXiv preprint arXiv:1611.09904.

Paper

SeqGAN

Yu, L., Zhang, W., Wang, J., & Yu, Y. (2017, February). Seqgan: Sequence generative adversarial nets with policy gradient. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1).

Paper

2002

Temporal Structure in Music

Eck, D., & Schmidhuber, J. (2002, September). Finding temporal structure in music: Blues improvisation with LSTM recurrent networks. In Proceedings of the 12th IEEE workshop on neural networks for signal processing (pp. 747-756). IEEE.

Paper

1980s - 1990s

Mozer, M. C. (1994). Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing. Connection Science, 6(2-3), 247-280.

Paper

Books and Reviews

Books

  • Briot, J. P., Hadjeres, G., & Pachet, F. (2020). Deep learning techniques for music generation (pp. 1-249). Springer.

Reviews

  • Hernandez-Olivan, C., & Beltran, J. R. (2021). Music composition with deep learning: A review. arXiv preprint arXiv:2108.12290. Paper

  • Ji, S., Luo, J., & Yang, X. (2020). A Comprehensive Survey on Deep Music Generation: Multi-level Representations, Algorithms, Evaluations, and Future Directions. arXiv preprint arXiv:2011.06801. Paper

  • Briot, J. P., Hadjeres, G., & Pachet, F. D. (2017). Deep learning techniques for music generation--a survey. arXiv preprint arXiv:1709.01620. Paper

4. Audio Generation

2022

Musika

Pasini, M., & Schlüter, J. (2022). Musika! Fast Infinite Waveform Music Generation. arXiv preprint arXiv:2208.08706.

Paper

2021

RAVE

Caillon, A., & Esling, P. (2021). RAVE: A variational autoencoder for fast and high-quality neural audio synthesis. arXiv preprint arXiv:2111.05011.

Paper GitHub

2020

Jukebox - OpenAI

Web Paper GitHub

2017

MuseNet - OpenAI

Web

5. Datasets

6. Journals and Conferences

  • International Society for Music Information Retrieval (ISMIR) Web

  • IEEE Signal Processing (ICASSP) Web

  • ELSEVIER Signal Processing Journal Web

  • Association for the Advancement of Artificial Intelligence (AAAI) Web

  • Journal of Artificial Intelligence Research (JAIR) Web

  • International Joint Conferences on Artificial Intelligence (IJCAI) Web

  • International Conference on Learning Representations (ICLR) Web

  • IET Signal Processing Journal Web

  • Journal of New Music Research (JNMR) Web

  • Audio Engineering Society - Conference on Semantic Audio (AES) Web

  • International Conference on Digital Audio Effects (DAFx) Web

7. Authors

  • David Cope Web

  • Colin Raffel Web

  • Jesse Engel Web

  • Douglas Eck Web

  • Anna Huang Web

  • François Pachet Web

  • Jeff Ens Web

  • Philippe Pasquier Web

8. Research Groups and Labs

  • Google Magenta Web

  • Audiolabs Erlangen Web

  • Music Informatics Group Web

  • Music and Artificial Intelligence Lab Web

  • Metacreation Lab Web

9. Apps for Music Generation with AI

  • AIVA (paid) Web

  • Amper Music (paid) Web

  • Ecrett Music (paid) Web

  • Humtap (free, iOS) Web

  • Amadeus Code (free/paid, iOS) Web

  • Computoser (free) Web

  • Brain.fm (paid) Web

10. Other Resources

  • Bustena (web in spanish to learn harmony theory) Web