-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils.py
62 lines (47 loc) · 1.48 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from __future__ import print_function
import networkx as nx
import numpy as np
import collections
def read_graph(args, edgeFile):
print('loading graph...')
if args.weighted:
G = nx.read_edgelist(edgeFile, nodetype=int, data=(('weight', float),), create_using=nx.DiGraph())
else:
G = nx.read_edgelist(edgeFile, nodetype=int, create_using=nx.DiGraph())
for edge in G.edges():
G[edge[0]][edge[1]]['weight'] = 1
if not args.directed:
G = G.to_undirected()
return G
def read_edgelist(inputFileName):
f = open(inputFileName, 'r')
lines = f.readlines()
f.close()
edgelist = []
for line in lines:
l = line.strip('\n\r').split(' ')
edge = (int(l[0]), int(l[1]))
edgelist.append(edge)
return edgelist
def read_feature(inputFileName):
f = open(inputFileName, 'r')
lines = f.readlines()
f.close()
features = []
for line in lines[1:]:
l = line.strip('\n\r').split(' ')
features.append(l)
features = np.array(features, dtype=np.float32)
return features
def write_embedding(embedding_result, outputFileName):
f = open(outputFileName, 'w')
N, dims = embedding_result.shape
for i in range(N):
s = ''
for j in range(dims):
if j == 0:
s = str(i) + ',' + str(embedding_result[i, j])
else:
s = s + ',' + str(embedding_result[i, j])
f.writelines(s + '\n')
f.close()