-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbenchmark_test.py
executable file
·42 lines (33 loc) · 1.1 KB
/
benchmark_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
from compression import *
from get_metrics import get_metrics
from glob import glob
from PIL import Image
from jpeg_compression import jpeg_compression
import matplotlib.pyplot as plt
import pandas as pd
image_path = "dataset/kodak/*.png"
#image_path = "BenchmarkIMAGES/BenchmarkIMAGES/*.jpg"
jpeg_compression_quality = 50
count = 0
image = []
for image_file in glob(image_path):
count = count + 1
d = []
d.append(count)
image.append(d)
out_name = compression_engine(image_file)
jpeg_compression(image_file,jpeg_compression_quality)
map_file = "msroi_map.jpg"
original_image = image_file
original = Image.open(original_image)
get_metrics(original_image,"jpeg_compressed.jpg",out_name,original.size)
image.pop()
jpeg_data = pd.read_csv('jpeg_psnr.csv')
jpeg_data_list = jpeg_data.values.tolist()
semantic_data = pd.read_csv('semantic_psnr.csv')
semantic_data_list = semantic_data.values.tolist()
plt.plot(image,jpeg_data_list, color='g')
plt.plot(image,semantic_data_list,color='r')
plt.xlabel("Kodak Dataset Images")
plt.ylabel("JPEG vs Semantic")
plt.savefig("saved.png")