-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathloss.py
40 lines (23 loc) · 1023 Bytes
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tensorflow.keras.backend as K
from tensorflow.keras.losses import categorical_crossentropy
def generalized_dice(y_true, y_pred):
"""
Generalized Dice Score
https://arxiv.org/pdf/1707.03237
"""
y_true = K.reshape(y_true,shape=(-1,4))
y_pred = K.reshape(y_pred,shape=(-1,4))
sum_p = K.sum(y_pred, -2)
sum_r = K.sum(y_true, -2)
sum_pr = K.sum(y_true * y_pred, -2)
weights = K.pow(K.square(sum_r) + K.epsilon(), -1)
generalized_dice = (2 * K.sum(weights * sum_pr)) / (K.sum(weights * (sum_r + sum_p)))
return generalized_dice
def generalized_dice_loss(y_true, y_pred):
return 1-generalized_dice(y_true, y_pred)
def custom_loss(y_true, y_pred):
"""
The final loss function consists of the summation of two losses "GDL" and "CE"
with a regularization term.
"""
return generalized_dice_loss(y_true, y_pred) + 1.25 * categorical_crossentropy(y_true, y_pred)