-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathprepare_data.py
166 lines (129 loc) · 6.71 KB
/
prepare_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import tables
import numpy as np
import nibabel as nib
from tqdm import tqdm
from glob import glob
from config import cfg
def read_brain(brain_dir, mode='train', x0=42, x1=194, y0=29, y1=221, z0=2, z1=146):
"""
A function that reads and crops a brain modalities (nii.gz format)
Parameters
----------
brain_dir : string
The path to a folder that contains MRI modalities of a specific brain
mode : string
'train' or 'validation' mode. The default is 'train'.
x0, x1, y0, y1, z0, z1 : int
The coordinates to crop brain volumes. For example, a brain volume with the
shape [x,y,z,modalites] is cropped [x0:x1, y0:y1, z0:z1, :] to have the shape
[x1-x0, y1-y0, z1-z0, modalities]. One can calculate the x0,x1,... by calculating
none zero pixels through dataset. Note that the final three shapes must be divisible
by the network downscale rate.
Returns
-------
all_modalities : array
The cropped modalities (+ gt if mode='train')
brain_affine : array
The affine matrix of the input brain volume
brain_name : str
The name of the input brain volume
"""
brain_dir = os.path.normpath(brain_dir)
flair = glob(os.path.join(brain_dir, '*_flair*.nii.gz'))
t1 = glob(os.path.join(brain_dir, '*_t1*.nii.gz'))
t1ce = glob(os.path.join(brain_dir, '*_t1ce*.nii.gz'))
t2 = glob(os.path.join(brain_dir, '*_t2*.nii.gz'))
if mode=='train':
gt = glob( os.path.join(brain_dir, '*_seg*.nii.gz'))
modalities_dir = [flair[0], t1[0], t1ce[0], t2[0], gt[0]]
elif mode=='validation':
modalities_dir = [flair[0], t1[0], t1ce[0], t2[0]]
all_modalities = []
for modality in modalities_dir:
nifti_file = nib.load(modality)
brain_numpy = np.asarray(nifti_file.dataobj)
all_modalities.append(brain_numpy)
# all modalities have the same affine, so we take one of them (the last one in this case),
# affine is just saved for preparing the predicted nii.gz file in the future.
brain_affine = nifti_file.affine
all_modalities = np.array(all_modalities)
all_modalities = np.rint(all_modalities).astype(np.int16)
all_modalities = all_modalities[:, x0:x1, y0:y1, z0:z1]
# to fit keras channel last model
all_modalities = np.transpose(all_modalities)
# tumor grade + name
brain_name = os.path.basename(os.path.split(brain_dir)[0]) + '_' + os.path.basename(brain_dir)
return all_modalities, brain_affine, brain_name
def create_table(dataset_dir, table_data_shape, save_dir, crop_coordinates, data_channels, k_fold=None):
"""
Reads and saves all brain volumes into a single table file.
Parameters
----------
dataset_dir :
The path to all brain volumes (ex: suppose we have a folder 'BraTS2019' that
contains two HGG and LGG folders each of which contains some folders so:
dataset_dir="./BraTS2019/*/*")
table_data_shape : tuple
A tuple which shows the final brain volume shape in the table
data_channels : int
Number of data channels/modalities
save_dir : str
The path to save table.
crop_coordinates : dict
k_fold : int
k-fold cross-validation
if specified, k .npy files will be saved. Each of these files shows the indexes of
brain volumes in that fold, which will be used for training the model.
Returns
-------
None
"""
all_brains_dir = glob(dataset_dir)
all_brains_dir.sort()
hdf5_file = tables.open_file(os.path.join(save_dir + 'data.hdf5'), mode='w')
filters = tables.Filters(complevel=5, complib='blosc')
data_shape = tuple([0] + list(table_data_shape) + [data_channels])
truth_shape = tuple([0] + list(table_data_shape))
affine_shape = tuple([0] + [4, 4])
data_storage = hdf5_file.create_earray(hdf5_file.root, 'data', tables.UInt16Atom(), shape=data_shape,
filters=filters, expectedrows=len(all_brains_dir))
truth_storage = hdf5_file.create_earray(hdf5_file.root, 'truth', tables.UInt8Atom(), shape=truth_shape,
filters=filters, expectedrows=len(all_brains_dir))
affine_storage = hdf5_file.create_earray(hdf5_file.root, 'affine', tables.Float32Atom(), shape=affine_shape,
filters=filters, expectedrows=len(all_brains_dir))
brain_names = []
for brain_dir in tqdm(all_brains_dir):
all_modalities, brain_affine, brain_name = read_brain(brain_dir, mode='train', **crop_coordinates)
brain = all_modalities[..., :4]
gt = all_modalities[..., -1]
# in BraTS 2017, 2018, 2019 there is no '3' label!
gt[gt==4] = 3
brain_names.append(brain_name)
data_storage.append(brain[np.newaxis,...])
truth_storage.append(gt[np.newaxis,...])
affine_storage.append(brain_affine[np.newaxis,...])
hdf5_file.create_array(hdf5_file.root, 'brain_names', obj=brain_names)
hdf5_file.close()
if k_fold:
validation_split = (1/k_fold) # this equal to 5-fold validation
all_HGG_names = [i for i in brain_names if 'HGG' in i]
all_LGG_names = [i for i in brain_names if 'LGG' in i]
np.random.seed(100)
np.random.shuffle(all_HGG_names)
np.random.shuffle(all_LGG_names)
HGG_val_size = int(validation_split * len(all_HGG_names))
LGG_val_size = int(validation_split * len(all_LGG_names))
for fold in range(k_fold):
chosen_HGG_val = all_HGG_names[fold*HGG_val_size:(fold+1)*HGG_val_size]
chosen_LGG_val = all_LGG_names[fold*LGG_val_size:(fold+1)*LGG_val_size]
chosen_HGG_train = [i for i in all_HGG_names if i not in chosen_HGG_val]
chosen_LGG_train = [i for i in all_LGG_names if i not in chosen_LGG_val]
# saving train_idx is enough
train = chosen_HGG_train + chosen_LGG_train
train_idx = [brain_names.index(i) for i in train]
train_idx.sort()
np.save(os.path.join(save_dir, 'fold{}_idx.npy'.format(fold)), train_idx)
if __name__ == '__main__':
create_table(cfg['data_dir'], cfg['table_data_shape'], cfg['save_data_dir'],
cfg['crop_coord'], cfg['data_channels'], cfg['k_fold'])