-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluation.py
31 lines (26 loc) · 1.24 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import tool
import recommender as rc
from similarity import *
from sklearn.metrics import mean_squared_error
from math import sqrt
class Evaluation:
def __init__(self):
self.dataMat = tool.loadUserMat()
self.testMat = tool.loadUserTestMat()
def evalByAccuracy(self, recommender):
y_true = []
y_pred = []
for user, ratings in self.testMat.items():
for book, rating in ratings.items():
y_true.append(float(self.dataMat[user][book]))
y_pred.append(recommender.predict(user, book, self.dataMat[user][book]))
rmse = sqrt(mean_squared_error(y_true, y_pred))
print("Root Mean Squared Error: %f" % rmse)
evaluation = Evaluation()
# evaluation.evalByAccuracy(recommender = rc.ItemBased(simMeasure=cosSim))
# evaluation.evalByAccuracy(recommender = rc.ItemBased(simMeasure=euclidSim))
# evaluation.evalByAccuracy(recommender = rc.ItemBased(simMeasure=pearsSim))
# evaluation.evalByAccuracy(recommender = rc.UserBased(simMeasure=cosSim))
# evaluation.evalByAccuracy(recommender = rc.UserBased(simMeasure=euclidSim))
# evaluation.evalByAccuracy(recommender = rc.UserBased(simMeasure=pearsSim))
evaluation.evalByAccuracy(recommender = rc.MatrixFactorization(K = 10))