forked from torch/nn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCosineDistance.lua
116 lines (94 loc) · 2.8 KB
/
CosineDistance.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
local CosineDistance, parent = torch.class('nn.CosineDistance', 'nn.Module')
function CosineDistance:__init()
parent.__init(self)
self.gradInput = {torch.Tensor(), torch.Tensor()}
end
local function makeContiguous(self, input1, input2)
if not input1:isContiguous() then
self._input1 = self._input1 or input1.new()
self._input1:resizeAs(input1):copy(input1)
input1 = self._input1
end
if not input2:isContiguous() then
self._input2 = self._input2 or input2.new()
self._input2:resizeAs(input2):copy(input2)
input2 = self._input2
end
return input1, input2
end
function CosineDistance:updateOutput(input)
local input1, input2 = input[1], input[2]
input1, input2 = makeContiguous(self, input1, input2)
if input1:dim() == 1 then
input1 = input1:view(1,-1)
input2 = input2:view(1,-1)
end
if not self.buffer then
self.buffer = input1.new()
self.w1 = input1.new()
self.w22 = input1.new()
self.w = input1.new()
self.w32 = input1.new()
self.ones = input1.new()
end
self.buffer:cmul(input1,input2)
self.w1:sum(self.buffer,2)
local epsilon = 1e-12
self.buffer:cmul(input1,input1)
self.w22:sum(self.buffer,2):add(epsilon)
self.ones:resizeAs(self.w22):fill(1)
self.w22:cdiv(self.ones, self.w22)
self.w:resizeAs(self.w22):copy(self.w22)
self.buffer:cmul(input2,input2)
self.w32:sum(self.buffer,2):add(epsilon)
self.w32:cdiv(self.ones, self.w32)
self.w:cmul(self.w32)
self.w:sqrt()
self.output:cmul(self.w1,self.w)
self.output:resize(input1:size(1))
return self.output
end
function CosineDistance:updateGradInput(input, gradOutput)
local v1 = input[1]
local v2 = input[2]
local not_batch = false
v1, v2 = makeContiguous(self, v1, v2)
if v1:dim() == 1 then
v1 = v1:view(1,-1)
v2 = v2:view(1,-1)
not_batch = true
end
if #self.gradInput ~= 2 then
self.gradInput[1] = self.gradInput[1] or v1.new()
self.gradInput[2] = self.gradInput[2] or v1.new()
end
local gw1 = self.gradInput[1]
local gw2 = self.gradInput[2]
gw1:resizeAs(v1):copy(v2)
gw2:resizeAs(v1):copy(v1)
self.buffer:cmul(self.w1,self.w22)
gw1:addcmul(-1,self.buffer:expandAs(v1),v1)
gw1:cmul(self.w:expandAs(v1))
self.buffer:cmul(self.w1,self.w32)
gw2:addcmul(-1,self.buffer:expandAs(v1),v2)
gw2:cmul(self.w:expandAs(v1))
local go = gradOutput:view(-1,1):expandAs(v1)
gw1:cmul(go)
gw2:cmul(go)
if not_batch then
self.gradInput[1]:resize(gw1:size(2))
self.gradInput[2]:resize(gw2:size(2))
end
return self.gradInput
end
function CosineDistance:clearState()
nn.utils.clear(self, {
'buffer',
'w1',
'w22',
'w',
'w32',
'ones',
})
return parent.clearState(self)
end