forked from OpenCloudOS/perf-prof
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwatchdog.c
527 lines (471 loc) · 16.2 KB
/
watchdog.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <api/fs/fs.h>
#include <monitor.h>
#include <tep.h>
#include <trace_helpers.h>
#include <stack_helpers.h>
struct monitor watchdog;
static void watchdog_sample(union perf_event *event, int instance);
#define STAGE_INIT 0
#define STAGE_MONITOR 1
struct watchdog_ctx {
int watchdog_running;
void *watchdog_hrtimer;
unsigned long watchdog_touch_ts;
unsigned long hrtimer_interrupts;
unsigned long hrtimer_interrupts_saved;
__u64 hrtimer_touch_ts;
int print_stack;
int print_sched;
};
static struct monitor_ctx {
int stage;
struct perf_evlist *evlist;
struct perf_evsel *perf_evsel_hrtimer_expire_entry;
struct callchain_ctx *cc;
int in_guest;
int comm;
int nr_cpus;
struct watchdog_ctx *watchdog;
int nr_watchdog;
int watchdog_thresh;
__u64 hrtimer_expire_entry;
__u64 hrtimer_start;
__u64 hrtimer_cancel;
__u64 sched_switch;
__u32 profile_type;
struct env *env;
} ctx = {
.stage = STAGE_INIT,
};
static int monitor_ctx_init(struct env *env)
{
char *cpumask = NULL;
char *str = NULL;
size_t len;
tep__ref();
if (env->callchain) {
ctx.cc = callchain_ctx_new(CALLCHAIN_KERNEL, stdout);
watchdog.pages *= 2;
}
ctx.in_guest = in_guest();
ctx.comm = 1;
ctx.nr_cpus = get_present_cpus();
ctx.watchdog = calloc(ctx.nr_cpus, sizeof(struct watchdog_ctx));
if (ctx.watchdog == NULL)
return -1;
ctx.nr_watchdog = 0;
if (procfs__read_str("sys/kernel/watchdog_cpumask", &cpumask, &len) == 0) {
struct perf_cpu_map *cpus = NULL;
cpus = perf_cpu_map__new(cpumask);
if (cpus)
cpus = perf_cpu_map__and(cpus, watchdog.cpus);
if (cpus) {
perf_cpu_map__put(watchdog.cpus);
watchdog.cpus = cpus;
free(env->cpumask);
env->cpumask = perf_cpu_map__string(cpus);
}
free(cpumask);
}
procfs__read_str("sys/kernel/watchdog_thresh", &str, &len);
if (str) {
ctx.watchdog_thresh = strtol(str, NULL, 10);
free(str);
} else
return -1;
ctx.env = env;
return 0;
}
static void monitor_ctx_exit(void)
{
tep__unref();
if (ctx.env->callchain) {
callchain_ctx_free(ctx.cc);
}
free(ctx.watchdog);
ctx.watchdog = NULL;
}
static struct perf_evsel *perf_tp_event(struct perf_evlist *evlist, const char *sys, const char *name)
{
struct perf_event_attr attr = {
.type = PERF_TYPE_TRACEPOINT,
.config = 0,
.size = sizeof(struct perf_event_attr),
.sample_period = 1,
.sample_type = PERF_SAMPLE_TID | PERF_SAMPLE_TIME | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_RAW,
.read_format = PERF_FORMAT_ID,
.pinned = 1,
.disabled = 1,
.wakeup_events = 1, //1个事件
.comm = ctx.comm,
//.use_clockid = 1,
//.clockid = CLOCK_MONOTONIC,
};
struct perf_evsel *evsel;
int id;
id = tep__event_id(sys, name);
if (id < 0)
return NULL;
attr.config = id;
evsel = perf_evsel__new(&attr);
if (!evsel) {
return NULL;
}
perf_evlist__add(evlist, evsel);
if (ctx.stage == STAGE_MONITOR)
ctx.comm = 0;
return evsel;
}
static int watchdog_init(struct perf_evlist *evlist, struct env *env)
{
struct perf_event_attr attr = {
.type = ctx.in_guest ? PERF_TYPE_SOFTWARE : PERF_TYPE_HARDWARE,
.config = ctx.in_guest ? PERF_COUNT_SW_CPU_CLOCK : PERF_COUNT_HW_CPU_CYCLES,
.size = sizeof(struct perf_event_attr),
.sample_period = env->freq,
.freq = 1,
.sample_type = PERF_SAMPLE_TID | PERF_SAMPLE_TIME | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_CPU |
(env->callchain ? PERF_SAMPLE_CALLCHAIN : 0),
.read_format = PERF_FORMAT_ID,
.pinned = 1,
.disabled = 1,
.exclude_callchain_user = 1,
.wakeup_events = 1, //1个事件
};
struct perf_evsel *evsel;
if (ctx.stage == STAGE_INIT && monitor_ctx_init(env) < 0)
return -1;
evsel = perf_tp_event(evlist, "timer", "hrtimer_expire_entry");
if (!evsel)
return -1;
ctx.perf_evsel_hrtimer_expire_entry = evsel;
ctx.hrtimer_expire_entry = perf_evsel__attr(evsel)->config;
if (ctx.stage == STAGE_MONITOR) {
evsel = perf_tp_event(evlist, "timer", "hrtimer_start");
if (!evsel)
return -1;
ctx.hrtimer_start = perf_evsel__attr(evsel)->config;
evsel = perf_tp_event(evlist, "timer", "hrtimer_cancel");
if (!evsel)
return -1;
ctx.hrtimer_cancel = perf_evsel__attr(evsel)->config;
evsel = perf_tp_event(evlist, "sched", "sched_switch");
if (!evsel)
return -1;
ctx.sched_switch = perf_evsel__attr(evsel)->config;
evsel = perf_evsel__new(&attr);
if (!evsel) {
return -1;
}
perf_evlist__add(evlist, evsel);
ctx.profile_type = attr.type;
watchdog.sample = watchdog_sample;
}
ctx.evlist = evlist;
return 0;
}
static int watchdog_filter(struct perf_evlist *evlist, struct env *env)
{
struct perf_evsel *evsel;
char filter[64];
int err;
if (ctx.stage == STAGE_INIT) {
struct ksyms *ksyms;
const struct ksym *ksym;
ksyms = ksyms__load();
if (!ksyms)
return -1;
ksym = ksyms__get_symbol(ksyms, "watchdog_timer_fn");
if (!ksym)
return -1;
snprintf(filter, sizeof(filter), "function==0x%lx", ksym->addr);
err = perf_evsel__apply_filter(ctx.perf_evsel_hrtimer_expire_entry, filter);
if (err < 0)
return err;
ksyms__free(ksyms);
} else if (ctx.stage == STAGE_MONITOR) {
perf_evlist__for_each_evsel(evlist, evsel) {
if (perf_evsel__attr(evsel)->type == PERF_TYPE_TRACEPOINT) {
__u64 config = perf_evsel__attr(evsel)->config;
if (config == ctx.hrtimer_expire_entry ||
config == ctx.hrtimer_start ||
config == ctx.hrtimer_cancel) {
int cpu, idx;
struct perf_cpu_map *cpus = perf_evsel__cpus(evsel);
perf_cpu_map__for_each_cpu(cpu, idx, cpus) {
snprintf(filter, sizeof(filter), "hrtimer==%p", ctx.watchdog[cpu].watchdog_hrtimer);
perf_evsel__apply_filter_cpu(evsel, filter, idx);
}
} else if (config == ctx.sched_switch) {
snprintf(filter, sizeof(filter), "next_comm~\"watchdog/*\"");
err = perf_evsel__apply_filter(evsel, filter);
if (err < 0)
return err;
}
}
}
}
return 0;
}
static void watchdog_exit(struct perf_evlist *evlist)
{
if (!watchdog.reinit)
monitor_ctx_exit();
}
// in linux/perf_event.h
// PERF_SAMPLE_TID | PERF_SAMPLE_TIME | PERF_SAMPLE_STREAM_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_RAW,
struct sample_type_header {
struct {
__u32 pid;
__u32 tid;
} tid_entry;
__u64 time;
__u64 stream_id;
struct {
__u32 cpu;
__u32 reserved;
} cpu_entry;
};
struct sample_type_callchain {
struct sample_type_header h;
struct callchain callchain;
};
struct sample_type_raw {
struct sample_type_header h;
struct {
__u32 size;
__u8 data[0];
} raw;
};
static void watchdog_sample_stage_init(union perf_event *event, int instance)
{
struct sample_type_raw *data = (void *)event->sample.array;
if (ctx.watchdog[data->h.cpu_entry.cpu].watchdog_hrtimer == NULL) {
struct tep_record record;
struct trace_seq s;
struct tep_event *e;
unsigned long long hrtimer;
memset(&record, 0, sizeof(record));
record.ts = data->h.time/1000;
record.cpu = data->h.cpu_entry.cpu;
record.size = data->raw.size;
record.data = data->raw.data;
trace_seq_init(&s);
e = tep_find_event_by_record(tep__ref(), &record);
tep__unref();
if (tep_get_field_val(&s, e, "hrtimer", &record, &hrtimer, 1) < 0) {
trace_seq_putc(&s, '\n');
trace_seq_do_fprintf(&s, stderr);
return;
}
ctx.watchdog[data->h.cpu_entry.cpu].watchdog_hrtimer = (void *)hrtimer;
ctx.nr_watchdog ++;
if (ctx.nr_watchdog == perf_cpu_map__nr(perf_evsel__cpus(ctx.perf_evsel_hrtimer_expire_entry))) {
watchdog.reinit = 1;
ctx.stage = STAGE_MONITOR;
}
trace_seq_destroy(&s);
}
tep__update_comm(NULL, data->h.tid_entry.tid);
tep__print_event(data->h.time/1000, data->h.cpu_entry.cpu, data->raw.data, data->raw.size);
if (watchdog.reinit == 1) {
print_time(stdout);
printf(" == collect all %d watchdog hrtimer\n", ctx.nr_watchdog);
}
}
static int get_softlockup_thresh(void)
{
return ctx.watchdog_thresh * 2;
}
static unsigned long get_timestamp(__u64 time)
{
return time >> 30LL; /* 2^30 ~= 10^9 */
}
static unsigned long hrtimer_sample_period(void)
{
/*
* convert watchdog_thresh from seconds to ns
* the divide by 5 is to give hrtimer several chances (two
* or three with the current relation between the soft
* and hard thresholds) to increment before the
* hardlockup detector generates a warning
*/
return get_softlockup_thresh() * ((__u64)NSEC_PER_SEC / 5);
}
static unsigned long sample_period(void)
{
/*
* convert watchdog_thresh from seconds to ns
* the divide by 5 is to give hrtimer several chances (two
* or three with the current relation between the soft
* and hard thresholds) to increment before the
* hardlockup detector generates a warning
*/
/*get_softlockup_thresh() * ((u64)NSEC_PER_SEC / 5);*/
return get_softlockup_thresh() / 5;
}
static int will_hardlockup(__u32 cpu, __u64 now)
{
unsigned long thresh;
if (!ctx.watchdog[cpu].watchdog_running ||
!ctx.watchdog[cpu].hrtimer_touch_ts)
return 0;
thresh = hrtimer_sample_period() + (NSEC_PER_SEC / 5);
if (ctx.watchdog[cpu].hrtimer_interrupts == ctx.watchdog[cpu].hrtimer_interrupts_saved &&
now - ctx.watchdog[cpu].hrtimer_touch_ts > thresh) {
print_time(stdout);
printf("WILL: hard lockup - CPU#%u [%llu - %llu > %lu]\n", cpu, now,
ctx.watchdog[cpu].hrtimer_touch_ts, thresh);
return 1;
} else if (ctx.env->verbose) {
print_time(stdout);
printf("DEBUG: hard lockup - CPU#%u [%llu - %llu <= %lu]\n", cpu, now,
ctx.watchdog[cpu].hrtimer_touch_ts, thresh);
}
return 0;
}
static int will_softlockup(__u32 cpu, __u64 now)
{
if (!ctx.watchdog[cpu].watchdog_running ||
!ctx.watchdog[cpu].watchdog_touch_ts)
return 0;
if (get_timestamp(now) - ctx.watchdog[cpu].watchdog_touch_ts > sample_period()) {
print_time(stdout);
printf("WILL: soft lockup - CPU#%u [%lu - %lu > %lu]\n", cpu, get_timestamp(now),
ctx.watchdog[cpu].watchdog_touch_ts, sample_period());
return 1;
} else if (ctx.env->verbose) {
print_time(stdout);
printf("DEBUG: soft lockup - CPU#%u [%lu - %lu <= %lu]\n", cpu, get_timestamp(now),
ctx.watchdog[cpu].watchdog_touch_ts, sample_period());
}
return 0;
}
static void __print_callchain(union perf_event *event)
{
struct sample_type_callchain *data = (void *)event->sample.array;
if (ctx.env->callchain) {
print_callchain_common(ctx.cc, &data->callchain, 0/*only kernel stack*/);
}
}
static void watchdog_sample(union perf_event *event, int instance)
{
struct sample_type_header *data = (void *)event->sample.array;
struct perf_evsel *evsel;
__u32 cpu = data->cpu_entry.cpu;
__u32 type;
__u64 config;
evsel = perf_evlist__id_to_evsel(ctx.evlist, data->stream_id, NULL);
if (!evsel) {
print_time(stderr);
fprintf(stderr, "%16s %6u [%03d] %llu.%06llu: ID %llu TO EVSEL FAILED!\n", tep__pid_to_comm(data->tid_entry.tid), data->tid_entry.tid,
data->cpu_entry.cpu, data->time / NSEC_PER_SEC, (data->time % NSEC_PER_SEC)/1000, data->stream_id);
return ;
}
type = perf_evsel__attr(evsel)->type;
config = perf_evsel__attr(evsel)->config;
if (type == ctx.profile_type) {
if (will_hardlockup(cpu, data->time)) {
ctx.watchdog[cpu].print_stack = 1;
} else {
ctx.watchdog[cpu].print_stack = 0;
}
ctx.watchdog[cpu].hrtimer_interrupts_saved = ctx.watchdog[cpu].hrtimer_interrupts;
if (ctx.watchdog[cpu].print_stack ||
ctx.watchdog[cpu].print_sched ||
ctx.env->verbose) {
print_time(stdout);
printf("%16s %6u [%03d] %llu.%06llu: cpu-cycles\n", tep__pid_to_comm(data->tid_entry.tid), data->tid_entry.tid,
data->cpu_entry.cpu, data->time / NSEC_PER_SEC, (data->time % NSEC_PER_SEC)/1000);
__print_callchain(event);
fflush(stdout);
fsync(fileno(stdout));
}
} else if (type == PERF_TYPE_TRACEPOINT) {
if (config == ctx.hrtimer_expire_entry) {
ctx.watchdog[cpu].watchdog_running = 1;
ctx.watchdog[cpu].hrtimer_interrupts ++;
ctx.watchdog[cpu].hrtimer_touch_ts = data->time;
if (will_softlockup(cpu, data->time)) {
ctx.watchdog[cpu].print_sched = 1;
} else {
ctx.watchdog[cpu].print_sched = 0;
}
} else if (config == ctx.hrtimer_start) {
ctx.watchdog[cpu].watchdog_running = 1;
ctx.watchdog[cpu].hrtimer_touch_ts = data->time;
} else if (config == ctx.hrtimer_cancel) {
ctx.watchdog[cpu].watchdog_running = 0;
} else if (config == ctx.sched_switch) {
ctx.watchdog[cpu].watchdog_touch_ts = get_timestamp(data->time);
}
if (ctx.watchdog[cpu].print_sched ||
ctx.env->verbose) {
struct sample_type_raw *raw = (void *)event->sample.array;;
tep__update_comm(NULL, data->tid_entry.tid);
tep__print_event(data->time/1000, data->cpu_entry.cpu, raw->raw.data, raw->raw.size);
fflush(stdout);
fsync(fileno(stdout));
}
}
}
static void watchdog_throttle(union perf_event *event, int instance)
{
struct perf_evsel *evsel;
int cpu;
const char *str;
__u32 type;
__u64 time;
if (!ctx.env->verbose)
return;
evsel = perf_evlist__id_to_evsel(ctx.evlist, event->throttle.stream_id, &cpu);
if (!evsel)
return;
type = event->header.type;
time = event->throttle.time;
if (type == PERF_RECORD_THROTTLE) {
str = "throttle";
} else if (type == PERF_RECORD_UNTHROTTLE) {
str = "unthrottle";
} else
return;
type = perf_evsel__attr(evsel)->type;
if (type == ctx.profile_type) {
print_time(stdout);
printf("==> [%03d] %llu.%06llu: %s\n", cpu, time / NSEC_PER_SEC, (time % NSEC_PER_SEC)/1000, str);
} else if (type == PERF_TYPE_TRACEPOINT) {
/* This won't happen */
}
}
static const char *watchdog_desc[] = PROFILER_DESC("watchdog",
"[OPTION...] [-F freq] [-g]",
"Detect hard lockup and soft lockup.", "",
"EXAMPLES", "",
" "PROGRAME" watchdog -F 1 -g",
" "PROGRAME" watchdog -C 0 -F 1 -g -v");
static const char *watchdog_argv[] = PROFILER_ARGV("watchdog",
"OPTION:",
"cpus", "output", "mmap-pages",
"version", "verbose", "quiet", "help",
PROFILER_ARGV_PROFILER, "freq", "call-graph");
struct monitor watchdog = {
.name = "watchdog",
.desc = watchdog_desc,
.argv = watchdog_argv,
.pages = 2,
.init = watchdog_init,
.filter = watchdog_filter,
.deinit = watchdog_exit,
.comm = monitor_tep__comm,
.sample = watchdog_sample_stage_init,
.throttle = watchdog_throttle,
.unthrottle = watchdog_throttle,
};
MONITOR_REGISTER(watchdog)