-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynamics.py
158 lines (119 loc) · 4.05 KB
/
dynamics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
###############################################################################
# Import required packages
import numpy as np
###############################################################################
###############################################################################
def stoch_dyn_CSA(states):
"""
Function that simulates stochastic colloidal self-assembly dynamics
states --> [xk, uk, xkw], shape = (3,1) or (3,)
xk --> system state (C6)
uk --> exogenous input (electric field voltage)
xkw --> Gaussian white noise ~ N(0,1)
"""
# Sampling time (s)
dt = 1
# Distribute states
xk = states[0]
uk = states[1]
xkw = states[2]
# Get diffusion coefficient
g2 = 0.0045*np.exp(-(xk-2.1-0.75*uk)**2)+0.0005
# Get drift coefficient
# F/KT = 10*(x-2.1-0.75*u)**2
dFdx = 20*(xk-2.1-0.75*uk)
dg2dx = -2*(xk-2.1-0.75*uk)*0.0045*np.exp(-(xk-2.1-0.75*uk)**2)
g1 = dg2dx-g2*dFdx
# Predict forward dynamics
xkp1 = xk + g1*dt + np.sqrt(2*g2*dt)*xkw
return [np.asarray([xkp1]),
np.asarray([g1]),
np.asarray([g2])]
###############################################################################
###############################################################################
def stoch_dyn_LVE(states):
'''
Function that simulates stochastic competitive Lotka-Volterra dynamics
with coexistence equilbirum
states = [xk, yk, xkw, ykw], shape = (4,1) or (4,)
xk, yk --> species populations
xkw, ykw --> independent Guassian white noise processes, ~ N(0,1)
'''
# Sampling time (s)
dt = 0.01
# Distribute states
xk = states[0]
yk = states[1]
xkw = states[2]
ykw = states[3]
# Enter parameters
k1 = 0.4
k2 = 0.5
xeq = 0.75
yeq = 0.625
d1 = 0.5
d2 = 0.5
# Get drift coefficients
g1x = xk*(1 - xk - k1*yk)
g1y = yk*(1 - yk - k2*xk)
# Get diffusion coefficients
g2x = 1/2*(d1*xk*(yk-yeq))**2
g2y = 1/2*(d2*yk*(xk-xeq))**2
# Predict forward dynamics
xkp1 = xk + g1x*dt + np.sqrt(2*g2x*dt)*xkw
ykp1 = yk + g1y*dt + np.sqrt(2*g2y*dt)*ykw
return [np.asarray([[xkp1], [ykp1]]),
np.asarray([[g1x], [g1y]]),
np.asarray([[g2x], [g2y]])]
###############################################################################
###############################################################################
def stoch_dyn_SIR(states):
'''
Function that simulates stochastic Susceptible-Infectious-Recovered (SIR)
dynamics
states = [sk, ik, rk, skw, ikw, rkw], shape = (6,1) or (6,)
sk, ik, rk --> susceptible, infectious, recovered populations
skw, ikw, rkw --> independent Guassian white noise processes, ~ N(0,1)
'''
# Sampling time (s)
dt = 1
# Distribute states
sk = states[0]
ik = states[1]
rk = states[2]
skw = states[3]
ikw = states[4]
rkw = states[5]
# Enter parameters
b = 1
d = 0.1
k = 0.2
alpha = 0.5
gamma = 0.01
mu = 0.05
h = 2
delta = 0.01
sigma_1 = 0.2
sigma_2 = 0.2
sigma_3 = 0.1
# Get nonlinear incidence rate
g = (k*sk**h*ik)/(sk**h+alpha*ik**h)
# Get drift coefficients
g1s = b-d*sk-g+gamma*rk
g1i = g-(d+mu+delta)*ik
g1r = mu*ik-(d+gamma)*rk
# Get diffusion coefficients
g2s = 1/2*(sigma_1*sk)**2
g2i = 1/2*(sigma_2*ik)**2
g2r = 1/2*(sigma_3*rk)**2
# Predict forward dynamics
skp1 = sk + g1s*dt + np.sqrt(2*g2s*dt)*skw
ikp1 = ik + g1i*dt + np.sqrt(2*g2i*dt)*ikw
rkp1 = rk + g1r*dt + np.sqrt(2*g2r*dt)*rkw
return [np.asarray([skp1, ikp1, rkp1]),
np.asarray([g1s, g1i, g1r]),
np.asarray([g2s, g2i, g2r]),
np.asarray([g]),
np.asarray([b-d*sk+gamma*rk]),
np.asarray([(d+mu+delta)*ik])]
###############################################################################