-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathevaluate.py
60 lines (48 loc) · 2.71 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import argparse
import os
import numpy as np
import torch
from core import Evaler
from data_loader import AneurysmSegDataset, TaskListQueue
from utils.project_utils import load_config, get_logger, get_devices
parser = argparse.ArgumentParser(description='AneurysmSeg evaluation')
parser.add_argument('-c', '--config', type=str, required=False, default='default',
help='config name. default: \'default\'')
parser.add_argument('-n', '--exp_id', type=int, required=False, default=1,
help='to identify different exp ids.')
parser.add_argument('-d', '--device', type=str, required=False, default='0',
help='device id for cuda and \'cpu\' for cpu. can be multiple devices split by \',\'.')
parser.add_argument('-v', '--verbose', action='store_true',
help='whether to use verbose/debug logging level.')
args = parser.parse_args()
def eval(config, exp_path, logger, devices):
if config['train'].get('manual_seed') is not None:
manual_seed = config['train'].get('manual_seed')
logger.info(f'Seed the RNG for all devices with {manual_seed}')
if manual_seed is not None:
torch.manual_seed(manual_seed)
# see https://pytorch.org/docs/stable/notes/randomness.html
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(manual_seed)
eval_task_list_queue = TaskListQueue(config, 'eval', logger, config['data']['eval_num_file'], shuffle_files=False)
eval_dataset = AneurysmSegDataset(config, 'eval', eval_task_list_queue, logger)
eval_loader = torch.utils.data.DataLoader(eval_dataset, batch_size=config['train']['batch_size'] * len(devices),
num_workers=config['data']['num_proc_workers'], drop_last=True)
evaler = Evaler(config, exp_path, devices, eval_loader, logger=logger)
evaler.eval()
if __name__ == '__main__':
# torch.multiprocessing.set_start_method('spawn')
exp_path = os.path.join('exp', args.config.replace('eval_', ''))
config = load_config(os.path.join('configs', args.config + '.yaml'))
exp_path = os.path.join(exp_path, str(args.exp_id))
logging_folder = os.path.join(exp_path, config.get('logging_folder')) \
if config.get('logging_folder') is not None else None
logger = get_logger('Task%sEvaler' % config['task'], logging_folder, args.verbose)
logger.debug('config loaded:\n%s', config)
devices = get_devices(args.device, logger)
logger.info('use device %s' % args.device)
try:
eval(config, exp_path, logger, devices)
except Exception as e:
logger.exception(e)