-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpmi.py
105 lines (87 loc) · 3.74 KB
/
pmi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import pandas as pd
import math
import numpy as np
import plotly.graph_objects as go
umfang = "text" # set it to "sentence" in order to get only the cooccurrence in the same sentence
unit = "author" # alternatively set it to "work"
df = pd.read_csv("work_title.tsv", sep="\t")
df = df[df.type == "Literary work"]
#remove the rows where identifier is empty
df = df[df.Identifier.notnull()]
df = df[df.MiMoTextBase_ID.notnull()]
def get_author(s):
return s.split("_")[-1]
if unit == "author":
df['Identifier'] = df['Identifier'].apply(get_author)
all_units = df.Identifier.unique().tolist() #get a list of all mentioned literary works
work_index = dict() #get a index of secondary works for each literary work
for work in all_units:
work_index[work] = set()
unique_text = df.text.unique() #get a list of all secondary works
for title in unique_text:
if umfang == "text":
ner_list = df[df.text == title].Identifier.unique() #get a list of unique literary works mentioned in the secondary work
for work in all_units:
if work in ner_list:
work_index[work].add(title)
else:
for sentence in df[df.text == title].sentence.unique():
ner_list = df[df.text == title][df.sentence == sentence].Identifier.unique()
for work in all_units:
if work in ner_list:
work_index[work].add(title+"_"+str(sentence))
n = len(all_units)
npmi_matrix = np.zeros((n, n))
for i in range(n):
for j in range(i+1, n): # Only compute upper triangle, since matrix is symmetric
p_work1 = len(work_index[all_units[i]]) / len(unique_text)
p_work2 = len(work_index[all_units[j]]) / len(unique_text)
p_occurrence = len(work_index[all_units[i]].intersection(work_index[all_units[j]])) / len(unique_text)
if p_occurrence == 0: # Avoid log(0) and division by zero
npmi = 0
else:
pmi = math.log2(p_occurrence) - math.log2(p_work1) - math.log2(p_work2 + 0.5)
npmi = pmi / -math.log2(p_occurrence)
npmi_matrix[i][j] = npmi
npmi_matrix[j][i] = npmi
# Assuming npmi_matrix is already computed and is a numpy array
x_labels = all_units
y_labels = all_units
custom_colorscale = [
[0.0, 'rgb(255,255,255)']
]
fig = go.Figure(data=go.Heatmap(
z=npmi_matrix,
x=x_labels,
y=y_labels,
colorscale=custom_colorscale,
zmin=-1, # Assuming the NPMI values range from -1 to 1
zmax=1,
colorbar=dict(ticktext=['No Cooccurrence'])
))
# Update layout to make it more readable
fig.update_layout(
title=f'nPMI Heatmap ({unit} cooccurrence in {umfang})',
xaxis_nticks=100,
yaxis_nticks=100,
xaxis_title=f'{unit} 1',
yaxis_title=f'{unit} 2',
margin=dict(l=150, r=5, t=45, b=120)
)
# Export to HTML
fig.write_html(f'npmi_heatmap_{unit}_{umfang}.html')
#find all pairs of items of all_units
# pmi_result = dict()
# for i in range(len(all_units)):
# for j in range(i+1, len(all_units)):
# p_work1 = len(work_index[all_units[i]])/len(unique_text)
# p_work2 = len(work_index[all_units[j]])/len(unique_text)
# p_occurrence = len(work_index[all_units[i]].intersection(work_index[all_units[j]]))/len(unique_text)
# pmi = math.log2(p_occurrence+0.5/((p_work1+0.5)*(p_work2+0.5)))
# npmi = pmi/-math.log2(p_occurrence+0.5)
# #print(all_units[i], all_units[j],npmi)
# pmi_result[(all_units[i], all_units[j])] = npmi
# #write the result to a file
# with open("pmi_result.tsv", "w",encoding="utf-8") as f:
# for key, value in pmi_result.items():
# f.write("%s\t%s\t%s\n"%(key[0], key[1], value))