-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathGraphObj.java
315 lines (281 loc) · 8.97 KB
/
GraphObj.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
package graph;
import java.util.HashMap;
import java.util.ArrayList;
import java.util.Collections;
/* See restrictions in Graph.java. */
/** A partial implementation of Graph containing elements common to
* directed and undirected graphs.
*
* @author Rafayel Mkrtchyan
*/
abstract class GraphObj extends Graph {
/** A new, empty Graph. */
GraphObj() {
successorData = new HashMap<Integer, ArrayList<Integer>>();
predecessorData = new HashMap<Integer, ArrayList<Integer>>();
nodes = new ArrayList<Integer>();
}
@Override
public int vertexSize() {
return successorData.size();
}
@Override
public int maxVertex() {
if (vertexSize() == 0) {
return 0;
}
int maximum = nodes.get(0);
for (int index = 1; index < nodes.size(); index++) {
if (nodes.get(index) > maximum) {
maximum = nodes.get(index);
}
}
return maximum;
}
@Override
public int edgeSize() {
int similar = 0;
for (int[] tuple : edges()) {
similar++;
}
return similar;
}
@Override
public abstract boolean isDirected();
@Override
public int outDegree(int v) {
if (!successorData.containsKey(v)) {
return 0;
}
return successorData.get(v).size();
}
@Override
public abstract int inDegree(int v);
@Override
public boolean contains(int u) {
return nodes.contains(u);
}
@Override
public boolean contains(int u, int v) {
if (contains(u) && contains(v)) {
return successorData.get(u).contains(v);
}
return false;
}
@Override
public int add() {
if (nodes.size() == 0) {
nodes.add(1);
successorData.put(1, new ArrayList<Integer>());
if (isDirected()) {
predecessorData.put(1, new ArrayList<Integer>());
}
return 1;
} else {
int item = 0;
sortlist(nodes);
if (!nodes.contains(1)) {
nodes.add(1);
successorData.put(1, new ArrayList<Integer>());
if (isDirected()) {
predecessorData.put(1, new ArrayList<Integer>());
}
return 1;
}
for (int index = 0; index < nodes.size() - 1; index++) {
if (nodes.get(index + 1) - nodes.get(index) > 1) {
item = nodes.get(index) + 1;
nodes.add(item);
successorData.put(item, new ArrayList<Integer>());
if (isDirected()) {
predecessorData.put(item, new ArrayList<Integer>());
}
break;
}
}
if (item == 0) {
int newitem = nodes.get(nodes.size() - 1) + 1;
nodes.add(newitem);
successorData.put(newitem, new ArrayList<Integer>());
if (isDirected()) {
predecessorData.put(newitem, new ArrayList<Integer>());
}
return newitem;
} else {
return item;
}
}
}
/** RETURNS and sorts the given list NUM. */
void sortlist(ArrayList<Integer> num) {
Collections.sort(num);
}
@Override
public int add(int u, int v) {
if (contains(u) && contains(v)) {
if (isDirected()) {
if (!successorData.get(u).contains(v)) {
successorData.get(u).add(v);
}
if (!predecessorData.get(v).contains(u)) {
predecessorData.get(v).add(u);
}
} else {
if (u == v) {
successorData.get(u).add(v);
} else {
if (!successorData.get(u).contains(v)) {
successorData.get(u).add(v);
successorData.get(v).add(u);
}
}
}
return u;
}
return u;
}
@Override
public void remove(int v) {
if (isDirected()) {
ArrayList<Integer> succ = predecessorData.get(v);
nodes.remove((Integer) v);
ArrayList<Integer> preds = successorData.get(v);
for (int item : preds) {
predecessorData.get(item).remove((Integer) v);
}
for (int newitem : succ) {
successorData.get(newitem).remove((Integer) v);
}
predecessorData.remove(v);
successorData.remove(v);
} else {
ArrayList<Integer> listNodes = successorData.get(v);
if (successorData.get(v).contains(v)) {
listNodes.remove((Integer) v);
}
successorData.remove(v);
nodes.remove((Integer) v);
for (int item : listNodes) {
successorData.get(item).remove((Integer) v);
}
}
}
@Override
public void remove(int u, int v) {
if (contains(u) && contains(v)) {
if (isDirected()) {
if (successorData.get(u).contains(v)) {
successorData.get(u).remove((Integer) v);
predecessorData.get(v).remove((Integer) u);
} else {
return;
}
} else {
if (successorData.get(u).contains(v)) {
successorData.get(u).remove((Integer) v);
successorData.get(v).remove((Integer) u);
} else {
return;
}
}
}
}
@Override
public Iteration<Integer> vertices() {
return Iteration.iteration(nodes);
}
@Override
public int successor(int v, int k) {
if (!nodes.contains(v)) {
return 0;
} else {
if (k >= successorData.get(v).size() || k < 0) {
return 0;
} else {
return successorData.get(v).get(k);
}
}
}
@Override
public abstract int predecessor(int v, int k);
@Override
public Iteration<Integer> successors(int v) {
if (!contains(v)) {
return Iteration.iteration(new ArrayList<Integer>());
} else {
return Iteration.iteration(successorData.get(v));
}
}
@Override
public abstract Iteration<Integer> predecessors(int v);
@Override
public Iteration<int[]> edges() {
ArrayList<int[]> edgeData = new ArrayList<int[]>();
if (isDirected()) {
for (int key : successorData.keySet()) {
for (int value : successorData.get(key)) {
int[] current = {key, value};
edgeData.add(current);
}
}
} else {
for (int key : successorData.keySet()) {
for (int value : successorData.get(key)) {
int[] current = {key, value};
boolean addTo = true;
for (int[] tup : edgeData) {
int[] temp = {tup[1], tup[0]};
if (current[0] == temp[0] && current[1] == temp[1]) {
addTo = false;
}
}
if (addTo) {
edgeData.add(current);
}
}
}
}
return Iteration.iteration(edgeData);
}
@Override
protected boolean mine(int v) {
return nodes.contains(v);
}
@Override
protected void checkMyVertex(int v) {
if (!mine(v)) {
throw new NullPointerException("Given vertex does not exist.");
}
}
@Override
protected int edgeId(int u, int v) {
if (!isDirected()) {
int x = Math.max(u, v);
int y = Math.min(u, v);
return ((x + y) * (x + y + 1)) / 2 + y;
}
return ((u + v) * (u + v + 1)) / 2 + v;
}
/** RETURNS my successor data.. */
HashMap<Integer, ArrayList<Integer>> getSuccessorData() {
return successorData;
}
/** RETURNS my predecessor data.. */
HashMap<Integer, ArrayList<Integer>> getPredecessorData() {
return predecessorData;
}
/** RETURNS all vertices of the graph. */
ArrayList<Integer> getNodes() {
return nodes;
}
/** A specific form that saves an information about the
* graph node and its neighbors. */
private HashMap<Integer, ArrayList<Integer>> successorData;
/** Saves information about predecessors of the vertex. */
private HashMap<Integer, ArrayList<Integer>> predecessorData;
/** A form that saves all vertices of the graph. */
private ArrayList<Integer> nodes;
/** Number of edges in the graph. Initially 0 when graph is
* empty. */
private int numEdges = 0;
}