-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
79 lines (57 loc) · 2.11 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
# Data downloading
DATA_OPTIONS = {"emotiv": {"file": "mnist-64s.csv",
"gdrive": "1nvSTPTUv5r6bc7axUJcz6dKHUjsqdgjm"},
"flex": {"file": "mnist-FLEX.csv",
"gdrive": "1MP8U_X-rQbhPQb-qax-6DMBkBRo-7DYY"}}
# Preprocessing
image_shape = (50,50)
train_ratio=0.70
test_ratio=0.15
validation_ratio=0.15
# Training
intermediate_dim = 512
latent_dim = 2
epochs = 200
batch_size = 16
loss_function = "mean_squared_error"
#######################################################
# Roots
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
DATA_DIR = os.path.join(ROOT_DIR, "data")
# RAW
RAW_DIR = os.path.join(DATA_DIR, "raw")
RAW_IMG_DIR = os.path.join(RAW_DIR, "IMG")
RAW_EEG_DIR = os.path.join(RAW_DIR, "EEG")
# DATASET
GDRIVE_ID = DATA_OPTIONS["flex"]["gdrive"]
GDRIVE_FILE = DATA_OPTIONS["flex"]["file"]
# PREPROCESSED
DATA_PREPROCESSED_DIR = os.path.join(DATA_DIR, "preprocessed")
PREPROCESSED_IMG_DIR = os.path.join(DATA_PREPROCESSED_DIR, "IMG")
PREPROCESSED_EEG_DIR = os.path.join(DATA_PREPROCESSED_DIR, "EEG")
# MODELS
MODEL_DIR = os.path.join(ROOT_DIR, "models")
MODEL_TENSORBOARD_DIR = os.path.join(MODEL_DIR, "logs/fit/")
MODEL_CHECKPOINTER_DIR = os.path.join(MODEL_DIR, "VAE.hdf5")
MODEL_TRAIN_METRICS = os.path.join(MODEL_DIR, "train_metrics.txt")
MODEL_TEST_METRICS = os.path.join(MODEL_DIR, "test_metrics.txt")
# NOTEBOOKS
NOTEBOOKS_DIR = os.path.join(ROOT_DIR, "notebooks")
# REFERENCES
REFERENCES_DIR = os.path.join(ROOT_DIR, "references")
# REPORTS
REPORTS_DIR = os.path.join(ROOT_DIR,"reports")
# FIGURES
FIGURES_DIR = os.path.join(REPORTS_DIR,"figures")
# analysis
FIGURES_PLOT = os.path.join(FIGURES_DIR,"plot.png")
FIGURES_BOXPLOT = os.path.join(FIGURES_DIR,"boxplot.png")
FIGURES_DISTRIBUTIONS = os.path.join(FIGURES_DIR,"distributions.png")
FIGURES_PDF = os.path.join(FIGURES_DIR,"pdf.png")
FIGURES_ECDF = os.path.join(FIGURES_DIR,"ecdf.png")
FIGURES_CORR = os.path.join(FIGURES_DIR,"corr.png")
# training
FIGURES_LEARNING_CURVE = os.path.join(FIGURES_DIR,"learning_curve.png")
# validation
FIGURES_VISUAL_EVAL = os.path.join(FIGURES_DIR,"visual_eval.png")