-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathexperiment_SPM_gm_GPR.py
149 lines (114 loc) · 5.33 KB
/
experiment_SPM_gm_GPR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""Example of experiment."""
from pathlib import Path
import joblib
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import KFold, GridSearchCV
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, DotProduct, WhiteKernel
from helper_functions import read_npy_files
PROJECT_ROOT = Path.cwd()
# --------------------------------------------------------------------------
random_seed = 42
np.random.seed(random_seed)
# --------------------------------------------------------------------------
# Create experiment's output directory
output_dir = PROJECT_ROOT / 'output' / 'experiments'
output_dir.mkdir(exist_ok=True)
experiment_name = 'gpr' # Change here*
experiment_dir = output_dir / experiment_name
experiment_dir.mkdir(exist_ok=True)
cv_dir = experiment_dir / 'cv'
cv_dir.mkdir(exist_ok=True)
# --------------------------------------------------------------------------
# Input data directory (plz, feel free to use NAN shared folder)
input_dir = PROJECT_ROOT / 'data' / 'SPM' /'np' / 'gm'
demographic_path = PROJECT_ROOT / 'data' / 'PAC2019_BrainAge_Training.csv'
# Reading data. If necessary, create new reader in helper_functions.
x, demographic_df = read_npy_files(str(input_dir), str(demographic_path),
use_mask=True)
x = [data[0] for data in x]
x = np.array(x)
# --------------------------------------------------------------------------
# Usiing only age
y = demographic_df['age'].values
# If necessary, extract gender and site from demographic_df too.
# --------------------------------------------------------------------------
n_folds = 5
kf = KFold(n_splits=n_folds, shuffle=True, random_state=random_seed)
# --------------------------------------------------------------------------
predictions_df = pd.DataFrame(demographic_df[['subject_ID', 'age']])
predictions_df['predictions'] = np.nan
mae_cv = np.zeros((n_folds, 1))
# --------------------------------------------------------------------------
for i_fold, (train_idx, test_idx) in enumerate(kf.split(x, y)):
x_train, x_test = x[train_idx], x[test_idx]
y_train, y_test = y[train_idx], y[test_idx]
print('CV iteration: %d' % (i_fold + 1))
# --------------------------------------------------------------------------
# Dimensionality reduction
print('Performing PCA')
pca = PCA(n_components=.95)
pca.fit(x_train)
x_train_pca = pca.transform(x_train)
x_test_pca = pca.transform(x_test)
# --------------------------------------------------------------------------
# Model
gpr = GaussianProcessRegressor()
# --------------------------------------------------------------------------
# Model selection
# Search space
param_grid = [{'kernel': [RBF()]},
{'kernel': [DotProduct()], 'alpha':[1e-2, 1]}
]
# Gridsearch
internal_cv = KFold(n_splits=5)
grid_cv = GridSearchCV(estimator=gpr,
param_grid=param_grid,
cv=internal_cv,
scoring='neg_mean_absolute_error',
verbose=1,
n_jobs=1)
# --------------------------------------------------------------------------
print('Perform Grid Search')
grid_result = grid_cv.fit(x_train_pca, y_train)
# --------------------------------------------------------------------------
best_regressor = grid_cv.best_estimator_
# --------------------------------------------------------------------------
y_test_predicted = best_regressor.predict(x_test_pca)
for row, value in zip(test_idx, y_test_predicted):
predictions_df.iloc[row, predictions_df.columns.get_loc('predictions')] = value
# --------------------------------------------------------------------------
# import pdb
# pdb.set_trace()
mae_test = mean_absolute_error(y_test, y_test_predicted)
print('MAE: %.3f ' % mae_test)
mae_cv[i_fold, :] = mae_test
joblib.dump(best_regressor, cv_dir / ('model_%d.joblib' % i_fold))
joblib.dump(pca, cv_dir / ('pca_%d.joblib' % i_fold))
print('CV results')
print('MAE: Mean(SD) = %.3f(%.3f)' % (mae_cv.mean(), mae_cv.std()))
mae_cv_df = pd.DataFrame(columns=['MAE'], data=mae_cv)
mae_cv_df.to_csv(cv_dir / 'mae_cv.csv', index=False)
predictions_df.to_csv(cv_dir / 'predictions_cv_GPR.csv', index=False)
# --------------------------------------------------------------------------
# --------------------------------------------------------------------------
# Training on whole data
pca_final = PCA(n_components=.95)
x_pca = pca_final.fit_transform(x)
clf_final = GaussianProcessRegressor()
param_grid_final = [{'kernel': [RBF()]},
{'kernel': [DotProduct()], 'alpha':[1e-2, 1]}
]
internal_cv = KFold(n_splits=5)
grid_cv_final = GridSearchCV(estimator=clf_final,
param_grid=param_grid_final,
cv=internal_cv,
scoring='neg_mean_absolute_error',
verbose=1)
grid_result = grid_cv_final.fit(x_pca, y)
best_regressor_final = grid_cv_final.best_estimator_
joblib.dump(best_regressor_final, experiment_dir / 'model.joblib')
joblib.dump(pca_final, experiment_dir / 'pca.joblib')