-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain_stgan_adain.py
executable file
·113 lines (95 loc) · 5.84 KB
/
main_stgan_adain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import argparse
from stgan_adain.solver import Solver
from data_loader import PairDataset, PairTestDataset
from torch.backends import cudnn
import json
from torch.utils import data
def str2bool(v):
return v.lower() in ('true')
def main(config):
# For fast training.
cudnn.benchmark = True
# Create directories if not exist.
if not os.path.exists(config.log_dir):
os.makedirs(config.log_dir)
if not os.path.exists(config.model_save_dir):
os.makedirs(config.model_save_dir)
if not os.path.exists(config.sample_dir):
os.makedirs(config.sample_dir)
if not os.path.exists(config.speaker_path):
raise Exception(f"speaker list {config.speaker_path} does not exist")
with open(config.speaker_path) as f:
speakers = json.load(f)
print(f"load speakers {speakers}", flush=True)
# Data loader.
#train_loader = get_loader(config.train_data_dir, config.batch_size, config.min_length, 'train', speakers, num_workers=config.num_workers,)
train_dataset = PairDataset(config.train_data_dir, speakers, config.min_length, config.few_shot)
train_loader = data.DataLoader(dataset=train_dataset,
batch_size=config.batch_size,
shuffle=(config.mode=='train'),
num_workers=config.num_workers,
drop_last=True)
test_loader = PairTestDataset(config.test_data_dir, config.wav_dir, speakers, src_spk=config.test_src_spk, trg_spk=config.test_trg_spk)
# Solver for training and testing StarGAN.
solver = Solver(train_loader, test_loader, config)
if config.mode == 'train':
solver.train()
# elif config.mode == 'test':
# solver.test()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Model configuration.
parser.add_argument('--num_speakers', type=int, default=10, help='dimension of speaker labels')
parser.add_argument('--lambda_cls', type=float, default=10, help='weight for domain classification loss')
parser.add_argument('--lambda_rec', type=float, default=10, help='weight for reconstruction loss')
parser.add_argument('--lambda_gp', type=float, default=10, help='weight for gradient penalty')
parser.add_argument('--lambda_adv', type=float, default=10, help='weight for adversarial training')
parser.add_argument('--lambda_id', type=float, default=5, help='weight for id mapping loss')
parser.add_argument('--lambda_spid', type=float, default=5, help='weight for id mapping loss')
parser.add_argument('--sampling_rate', type=int, default=16000, help='sampling rate')
# modules
parser.add_argument('--discriminator', type = str, default = 'PatchDiscriminator')
parser.add_argument('--spenc', type = str, default = 'SPEncoder')
parser.add_argument('--drop_affine', default = True, action = 'store_false', help = 'use affine in Generator IN layers')
parser.add_argument('--generator', type = str, default = 'Generator')
parser.add_argument('--res_block', type = str, default = 'ResidualBlockSplit')
# Training configuration.
parser.add_argument('--batch_size', type=int, default=8, help='mini-batch size')
parser.add_argument('--min_length', type=int, default=256 )
parser.add_argument('--num_iters', type=int, default=500000, help='number of total iterations for training D')
parser.add_argument('--drop_id_step', type = int, default = 10000, help = 'steps drop id mapping loss')
parser.add_argument('--num_iters_decay', type=int, default=100000, help='number of iterations for decaying lr')
parser.add_argument('--g_lr', type=float, default=0.0002, help='learning rate for G')
parser.add_argument('--d_lr', type=float, default=0.0001, help='learning rate for D')
parser.add_argument('--n_critic', type=int, default=1, help='number of D updates per each G update')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for Adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer')
parser.add_argument('--resume_iters', type=int, default=None, help='resume training from this step')
parser.add_argument('--device', type=int, default=0, help='choosing cuda device')
parser.add_argument('--spk_cls', default = False, action = 'store_true', help = 'if or not use spk cls loss for SPEncoder module')
parser.add_argument('--few_shot', default = None, type = int, help = 'few shot learning')
# Test configuration.
parser.add_argument('--test_iters', type=int, default=100000, help='test model from this step')
parser.add_argument('--test_src_spk', type = str, default = 'VCC2SF1')
parser.add_argument('--test_trg_spk', type = str, default = 'VCC2SM1')
# Miscellaneous.
parser.add_argument('--num_workers', type=int, default=1)
parser.add_argument('--mode', type=str, default='train', choices=['train', 'test'])
parser.add_argument('--use_tensorboard', type=str2bool, default=True)
# Directories.
parser.add_argument('--train_data_dir', type=str, default='./data/mc/train')
parser.add_argument('--test_data_dir', type=str, default='./data/mc/test')
parser.add_argument('--wav_dir', type=str, default="./data/VCTK-Corpus/wav16")
parser.add_argument('--log_dir', type=str, default='./logs')
parser.add_argument('--model_save_dir', type=str, default='./models')
parser.add_argument('--sample_dir', type=str, default='./samples')
parser.add_argument('--speaker_path', type = str)
# Step size.
parser.add_argument('--log_step', type=int, default=10)
parser.add_argument('--sample_step', type=int, default=1000)
parser.add_argument('--model_save_step', type=int, default=1000)
parser.add_argument('--lr_update_step', type=int, default=1000)
config = parser.parse_args()
print(config)
main(config)