Skip to content

Latest commit

 

History

History
62 lines (47 loc) · 2.83 KB

File metadata and controls

62 lines (47 loc) · 2.83 KB

Federated Learning and Split Learning with raspberry pie

This is for releasing the source code of the SRDS 2020 paper "End-to-End Evaluation of Federated Learning and Split Learning for Internet of Things".

If you find it is useful and used for publication. Please kindly cite our work as:

@inproceedings{gao2020end,
title={End-to-End Evaluation of Federated Learning and Split Learning for Internet of Things},
author={Gao, Yansong and Kim, Minki and Abuadbba, Sharif and Kim, Yeonjae and Thapa, Chandra and Kim, Kyuyeon and Camtepe, Seyit A and Kim, Hyoungshick and Nepal, Surya},
booktitle={The 39th International Symposium on Reliable Distributed Systems (SRDS)},
year={2020}}

Helpful Link

Description

This repository contains the implementations of various distributed machine learning models like Federated learning, split learning and ensemble learning

Requirements(Desktop)

  • Python==3.6
  • PyTorch==1.5.1

Requirements(Raspberry pie3)

  • Python==3.7
  • PyTorch==1.0.0

Repository summary

  • models directory: has pre-processed training/testing data of MIT arrhythmia ECG database in hdf5 format. If you want, you can upload another preprocessed train and test data here.
  • federated_learning directory: source codes of federated learning in ipynb and .py format
  • split_learning directory: source codes of split learning in ipynb and .py format
  • ensemble_learning directory: source codes of ensemble learning in ipynb and .py format

How to use

1. Run client on desktop

you need to use ~client.ipynb file

2. Run client on raspberry pie

you need to use ~client_rasp.ipynb or ~client_rasp.py file If you run these files, you can see the temperature, memory usage of raspberry pie.

Overall process

set hyperparameters

  • set variable users, in server and client file
  • set variable rounds, local_epoch or epochs of training

Running code

  • Run the server code first
  • After run server, run the clients

input information

  • if you run the server, you can see the printed ip address of server
  • when you run the client you need the enter order of client and ip address
  • if there is no problem, training will be started

Project members

Gao Yansong, Kim Minki, Abuadbba Sharif, Kim Yeonjae, Thapa Chandra, Kim Kyuyeon, Camtepe Seyit A, Kim Hyoungshick, Nepal Surya