-
Notifications
You must be signed in to change notification settings - Fork 0
/
detect_blinks.py
165 lines (130 loc) · 5.04 KB
/
detect_blinks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import eye
# from imutils.video import FileVideoStream
from imutils.video import VideoStream
from imutils import face_utils
from pythonosc import osc_message_builder
from pythonosc import udp_client
import numpy as np
import argparse
import imutils
import time
import dlib
import cv2
EYE_AR_THRESH = 0.24
EYE_AR_CONSEC_FRAMES = 1
# after this count of frames without eye - reset CURRENT_SCENE to 0
RESET_THRESH = 50
# Scene 0 - reset scene
# Scene 1 - calibration scene / intro
# Scene 2 - movie
# Scene 3 - outro
# enum?
# Frames without person
NO_ONE_IN = 0
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--shape-predictor", required=True,
help="path to facial landmark predictor")
ap.add_argument("--ip", default="127.0.0.1", help="OSC server IP")
ap.add_argument("--port", type=int, default=5005, help="OSC server port")
args = ap.parse_args()
# initialize the frame counters and the total number of blinks
COUNTER = 0
TOTAL = 0
FRAME_COUNTER = 0
# initialize dlib's face detector (HOG-based) and then create
# the facial landmark predictor
print("[INFO] loading facial landmark predictor...")
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args.shape_predictor)
# grab the indexes of the facial landmarks for the left and
# right eye, respectively
# (lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS["left_eye"]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS["right_eye"]
# start the video stream thread
print("[INFO] camera sensor warming up...")
vs = VideoStream().start()
# OSC client
client = udp_client.SimpleUDPClient(args.ip, args.port)
time.sleep(2.0)
start_time = int(time.time())
while True:
if NO_ONE_IN < RESET_THRESH:
# run this for reset scene
client.send_message("/scene", 2)
# grab video, resize and convert it to grayscale
frame = vs.read()
frame = imutils.resize(frame, width=400)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# grayed = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# detect faces in the grayscale frame
rects = detector(gray, 0)
# if there is no rects for 5 seconds - reset
# if len(rects) > 0:
# client.send_message("/reset", 1)
# time.sleep(0.2)
# client.send_message("/reset", 0)
# loop over the face detections
for rect in rects:
# determine the facial landmarks for the face region, then
# convert the facial landmark (x, y)-coordinates to a NumPy
# array
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
# extract the left and right eye coordinates, then use the
# coordinates to compute the eye aspect ratio for both eyes
# leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
# leftEAR = eye.aspect_ratio(leftEye)
rightEAR = eye.aspect_ratio(rightEye)
# average the eye aspect ratio together for both eyes
# ear = (leftEAR + rightEAR) / 2.0
# compute the convex hull for the left and right eye, then
# visualize each of the eyes
# leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
# cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
# check to see if the eye aspect ratio is below the blink
# threshold, and if so, increment the blink frame counter
if rightEAR < EYE_AR_THRESH:
COUNTER += 1
# otherwise, the eye aspect ratio is not below the blink
# threshold
else:
# if the eyes were closed for a sufficient number of
# then increment the total number of blinks
if COUNTER >= EYE_AR_CONSEC_FRAMES:
TOTAL += 1
# reset the eye frame counter
COUNTER = 0
# draw the total number of blinks on the frame along with
# the computed eye aspect ratio for the frame
client.send_message("/counter", TOTAL)
client.send_message("/ear", rightEAR)
cv2.putText(frame, "Blinks: {}".format(TOTAL), (10, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "EAR: {:.2f}".format(rightEAR), (200, 30),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Rect: {:.2f}".format(len(rects)), (10, 60),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.putText(frame, "Frame: {:.2f}".format(FRAME_COUNTER), (10, 90),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
if len(rects) < 1:
NO_ONE_IN += 1
else:
NO_ONE_IN = 0
if NO_ONE_IN > RESET_THRESH:
# run this for reset scene
client.send_message("/scene", 0)
cv2.putText(frame, "NO_ONE_IN: {:.2f}".format(NO_ONE_IN), (10, 120),
cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
FRAME_COUNTER += 1
# show the frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()