forked from fllc3-icme2021/fllc3-icme2021.github.io
-
Notifications
You must be signed in to change notification settings - Fork 1
/
index_poster_bk.html
748 lines (634 loc) · 42 KB
/
index_poster_bk.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
<!DOCTYPE html>
<html lang="en">
<head>
<title>FLL3</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link rel="icon" type="image/x-ico" href="images/106point.jpg" />
<link href="https://fonts.googleapis.com/css?family=B612+Mono|Cabin:400,700&display=swap" rel="stylesheet">
<link rel="stylesheet" href="fonts/icomoon/style.css">
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css"
integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" crossorigin="anonymous">
<link rel="stylesheet" href="css/jquery-ui.css">
<link rel="stylesheet" href="css/owl.carousel.min.css">
<link rel="stylesheet" href="css/owl.theme.default.min.css">
<link rel="stylesheet" href="css/owl.theme.default.min.css">
<link rel="stylesheet" href="css/jquery.fancybox.min.css">
<link rel="stylesheet" href="fonts/flaticon/font/flaticon.css">
<link rel="stylesheet" href="css/aos.css">
<link href="css/jquery.mb.YTPlayer.min.css" media="all" rel="stylesheet" type="text/css">
<link rel="stylesheet" href="css/style.css">
<!-- HTML5 shim and Respond.js for IE8 support of HTML5 elements and media queries -->
<!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.2/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
<script>
(function (i, s, o, g, r, a, m) {
i['GoogleAnalyticsObject'] = r;
i[r] = i[r] || function () {
(i[r].q = i[r].q || []).push(arguments)
}, i[r].l = 1 * new Date();
a = s.createElement(o),
m = s.getElementsByTagName(o)[0];
a.async = 1;
a.src = g;
m.parentNode.insertBefore(a, m)
})(window, document, 'script', 'https://www.google-analytics.com/analytics.js', 'ga');
ga('create', 'UA-88572407-1', 'auto');
ga('send', 'pageview');
</script>
</head>
<body data-spy="scroll" data-target=".site-navbar-target" data-offset="300">
<div class="site-wrap">
<div class="site-mobile-menu site-navbar-target">
<div class="site-mobile-menu-header">
<div class="site-mobile-menu-close mt-3">
<span class="icon-close2 js-menu-toggle"></span>
</div>
</div>
<div class="site-mobile-menu-body"></div>
</div>
<!---------------------------导航栏------------------------------->
<div class="site-navbar py-2 js-sticky-header site-navbar-target d-none pl-0 d-lg-block" role="banner">
<div class="container">
<div class="d-flex align-items-center">
<div class="mr-auto">
<nav class="site-navigation position-relative text-right" role="navigation">
<ul class="site-menu main-menu js-clone-nav mr-auto d-none pl-0 d-lg-block">
<li class="active">
<a href="index.html" class="nav-link text-left">Home</a>
</li>
<li>
<a href="index.html#dates" class="nav-link text-left">Important dates</a>
</li>
<li>
<a href="index.html#awards" class="nav-link text-left">organizer</a>
</li>
<li>
<a href="datasets.html" class="nav-link text-left">Datasets</a>
</li>
<li>
<a href="evaluation.html" class="nav-link text-left">evaluation</a>
</li>
<li>
<a href="leaderboard.html" class="nav-link text-left">leaderboard</a>
</li>
<li class="nav-item dropdown">
<a class="nav-link dropdown-toggle" href="challenge.html" id="navbarDropdown"
role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false">
Previous
</a>
<div class="dropdown-menu" aria-labelledby="navbarDropdown">
<a class="dropdown-item" href="https://fllc-icpr2020.github.io/home/">FLLC2_ICPR2020</a>
<a class="dropdown-item" href="https://facial-landmarks-localization-challenge.github.io/index_poster.html#index">FLLC1_ICME2019</a>
</div>
</li>
</ul>
</nav>
</div>
</div>
</div>
</div>
</div>
<div class="site-blocks-cover overlay inner-page-cover" style="background-image: url('images/intro-background2.jpg');"
data-stellar-background-ratio="0.5">
<div class="container">
<div class="row align-items-center justify-content-center">
<div class="col-md-10 text-center" data-aos="fade-up">
<!-- <h3> The 2nd Learning from Imperfect Data (LID) Workshop</h3>-->
<h1>The 3rd Grand Challenge of 106-Point Facial Landmark Localization</h1>
<h3> ICME 2021</h3>
<h3> July 5 2021, Shenzhen, China</h3>
<br>
<a class="btn" href="https://wj.qq.com/s2/8104361/7743">Click to sign up</a>
</div>
</div>
</div>
</div>
<div class="site-section">
<div class="container">
<div class="row">
<div class="col-lg-12" id="schedule">
<!-- <div class="section-title">-->
<!-- <h2>Schedule</h2>-->
<!-- </div>-->
<!-- <div class="trend-entry d-flex">-->
<!-- <div class="trend-contents">-->
<!-- <table class="table table-hover" style="font-size:14px">-->
<!-- <thead>-->
<!-- <tr>-->
<!-- <th scope="col"> Date </th>-->
<!-- <th scope="col"> June 14 Sunday 2020 <br/>(Pacific Time, SF Time) </th>-->
<!-- <th scope="col"> Speaker</th>-->
<!-- <th scope="col"> Topic</th>-->
<!-- </tr>-->
<!-- </thead>-->
<!-- <tbody>-->
<!-- <tr>-->
<!-- <td>8:30-8:40</td>-->
<!-- <td>Research Scientist at Stealth Mode AI Startup</td>-->
<!-- <td>Shuai Zheng</td>-->
<!-- <td>Opening Remark [<a href="slides/lidworkshopcvpr-opening.pdf">slide</a>][<a href="https://youtu.be/ve8NCkP2GbY">video</a>][<a href="https://www.bilibili.com/video/BV1BV41167kK">bilibili</a>]</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>8:40-9:10</td>-->
<!-- <td>Professor at Johns Hopkins University</td>-->
<!-- <td>Alan Yuille</td>-->
<!-- <td><strong>Invited talk 1: </strong>[<a href="slides/lidworkshopcvpr-1.pdf">slide</a>][<a href="https://youtu.be/8T4Nvx3u2VE">video</a>][<a href="https://www.bilibili.com/video/BV1Ff4y1R7DJ">bilibili</a>] You Only Annotate Once, or Never</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>9:10-9:40</td>-->
<!-- <td>CEO at Ariel AI Inc. / Associate Professor UCL</td>-->
<!-- <td>Iasonas Kokkinos</td>-->
<!-- <td><strong>Invited talk 2: </strong>[<a href="slides/lidworkshopcvpr-2.pdf">slide</a>][<a href="https://youtu.be/bP8jatY_OxY">video</a>][<a href="https://www.bilibili.com/video/BV1Yt4y1Q7GJ">bilibili</a>] Learning 3D object models from 2D images.</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>9:50-10:20</td>-->
<!-- <td>Director of Research at Mapillary</td>-->
<!-- <td>Peter Kontschieder </td>-->
<!-- <td><strong>Invited talk 3: </strong>[<a href="slides/lidworkshopcvpr-3.pdf">slide</a>][<a href="https://youtu.be/KREJY1ABGA8">video</a>][<a href="https://www.bilibili.com/video/BV1MC4y1h7Jw">bilibili</a>] Computer Vision with Less Supervision</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>10:30-11:00</td>-->
<!-- <td>Research Scientist at Google</td>-->
<!-- <td>Boqing Gong</td>-->
<!-- <td><strong>Invited talk 4: </strong>[<a href="slides/lidworkshopcvpr-4.pdf">slide</a>][<a href="https://youtu.be/0Z0DiyS39Sk">video</a>][<a href="https://www.bilibili.com/video/BV1SD4y1S73V">bilibili</a>] Towards Visual Recognition in the Wild: Long-Tailed Sources and Open Compound Targets</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>11:10-11:40</td>-->
<!-- <td>Staff Research Scientist at Facebook Research</td>-->
<!-- <td>Zhicheng Yan</td>-->
<!-- <td><strong>Invited talk 5: </strong>[<a href="slides/lidworkshopcvpr-5.pdf">slide</a>][<a href="https://youtu.be/I8g0LlEER9g">video</a>][<a href="https://www.bilibili.com/video/BV1H5411e73y">bilibili</a>] Decoupling Representation and Classifier for Long-Tailed Recognition</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>11:50-12:20</td>-->
<!-- <td>ETH Zurich</td>-->
<!-- <td>Guolei Sun</td>-->
<!-- <td><strong>Oral 1: </strong>[<a href="slides/Track-1-1-LID-wsss-cvl-eth.pptx">slide</a>][<a href="https://www.youtube.com/watch?v=XfQdw4-3-hg">video</a>][<a href="https://docs.google.com/document/d/1Eec63PPUePBPIPaiZjBo2fcdWA7hy26GdVZVf6jc8bQ/edit#heading=h.z9ischr02w32">Q&A</a>] The 1st Place of Track-1: Mining Cross-Image Semantics for Weakly-->
<!--Supervised Semantic Segmentation</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>14:00-14:30</td>-->
<!-- <td>Professor at University of California, Merced</td>-->
<!-- <td>Ming-Hsuan Yang</td>-->
<!-- <td><strong>Invited talk 6: </strong>[<a href="slides/lidworkshopcvpr-6.pdf">slide</a>][<a href="https://youtu.be/5mn_566NU_4">video</a>][<a href="https://www.bilibili.com/video/BV1yZ4y1u7tB">bilibili</a>] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>14:40-15:10</td>-->
<!-- <td>UCU & SoftServe Team</td>-->
<!-- <td>Mariia Dobko</td>-->
<!-- <td><strong>Oral 2: </strong>[<a href="slides/Track-1-3-UCU & SoftServe Solution Presentation.pdf">slide</a>][<a href="https://youtu.be/mCrR7rhPMqs">video</a>][<a href="https://docs.google.com/document/d/1Eec63PPUePBPIPaiZjBo2fcdWA7hy26GdVZVf6jc8bQ/edit#heading=h.p0c0edojmlgg">Q&A</a>] The 3rd Place of Track-1: NoPeopleAllowed: The 3 step approach to weakly supervised semantic-->
<!--segmentation</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>15:20-15:50</td>-->
<!-- <td>Intel</td>-->
<!-- <td>Hao Zhao</td>-->
<!-- <td><strong>Oral 3: </strong>[<a href="slides/Track-2-1-Unmix.pdf">slide</a>][<a href="https://www.youtube.com/watch?v=wac4daUcTIo&list=UUX6tsirfrt2W3vnDbKIy2Zw&index=4">video</a>][<a href="https://docs.google.com/document/d/1Eec63PPUePBPIPaiZjBo2fcdWA7hy26GdVZVf6jc8bQ/edit#heading=h.ls3cxq8tx8ct">Q&A</a>] The 1st Place of Track-2:Pointly supervised Scene Parsing with Uncertainty Mixture</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>16:00-16:30</td>-->
<!-- <td>Seoul National University</td>-->
<!-- <td>Wonho Bae</td>-->
<!-- <td><strong>Oral 4: </strong>[<a href="slides/Track-3-1-lid2020_snuvl.pdf">slide</a>][<a href="https://www.youtube.com/watch?v=j_4Msm76-Y8&list=UUX6tsirfrt2W3vnDbKIy2Zw&index=1">video</a>][<a href="https://docs.google.com/document/d/1Eec63PPUePBPIPaiZjBo2fcdWA7hy26GdVZVf6jc8bQ/edit#heading=h.b72f14n87sic">Q&A</a>] The 1st Place of Track-3 & The 2nd Place of Track-1: Revisiting Class Activation Mapping for Learning from Imperfect Data</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>16:40-17:10</td>-->
<!-- <td>Beijing Jiaotong University & Mepro Team</td>-->
<!-- <td>Chuangchuang Tan</td>-->
<!-- <td><strong>Oral 5: </strong>[<a href="slides/Track-3-2-LID2020presentation_Tan.pdf">slide</a>][<a href="https://www.youtube.com/watch?v=DqOV-4qUCqQ&list=UUX6tsirfrt2W3vnDbKIy2Zw&index=2">video</a>][<a href="https://docs.google.com/document/d/1Eec63PPUePBPIPaiZjBo2fcdWA7hy26GdVZVf6jc8bQ/edit#heading=h.iud5tsfagf95">Q&A</a>] The 2nd Place of Track-3: Dual Gradients Localization framework for-->
<!--Weakly Supervised Object Localization</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>17:20-17:50</td>-->
<!-- <td>Nanjing University Of Science and Technology & LEAP Group@PCA Lab</td>-->
<!-- <td>Zhendong Wang </td>-->
<!-- <td><strong>Oral 6: </strong>[<a href="slides/Track-3-3.pdf">slide</a>][<a href="https://www.youtube.com/watch?v=sO2c_DyzVHo&list=UUX6tsirfrt2W3vnDbKIy2Zw&index=2">video</a>][<a href="https://www.bilibili.com/video/BV1Ff4y1R7DJ">bilibili</a>][<a href="https://docs.google.com/document/d/1Eec63PPUePBPIPaiZjBo2fcdWA7hy26GdVZVf6jc8bQ/edit#heading=h.mm8x1bvqv3me">Q&A</a>] The 3rd Place of Track-3: Weakly Supervised Object Localization</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>17:50-18:20</td>-->
<!-- <td>Professor at University of Adelaide</td>-->
<!-- <td>Chunhua Shen</td>-->
<!-- <td><strong>Invited talk 7: </strong>[<a href="slides/lidworkshopcvpr-7.pdf">slide</a>] Single shot instance segmentation</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>18:20-18:30</td>-->
<!-- <td>Assistant Professor at University of Technology Sydney</td>-->
<!-- <td>Yunchao Wei</td>-->
<!-- <td colspan=3> Closing Remark [<a href="slides/lidworkshopcvpr-closing.pdf">slide</a>][<a href="https://youtu.be/dEP0Se3zzpc">video</a>][<a href="https://www.bilibili.com/video/BV1QK4y1s7ag">bilibili</a>]</td>-->
<!-- </tr>-->
<!-- </tbody>-->
<!-- </table>-->
<!-- </div>-->
<!-- </div>-->
</div>
<!-- <div class="col-lg-12" id="results" style="padding-top:80px;margin-top:-80px;">-->
<!-- <div class="section-title">-->
<!-- <h2>Challenge results</h2>-->
<!-- </div>-->
<!-- <div class="trend-entry d-flex">-->
<!-- <table class="table">-->
<!-- <thead>-->
<!-- <tr>-->
<!-- <th scope="col" colspan="2"> Track1: Weakly-supervised Semantic Segmentation Challenge</th>-->
<!-- </tr>-->
<!-- </thead>-->
<!-- <tbody>-->
<!-- <tr>-->
<!-- <td>1st</td>-->
<!-- <td>Guolei Sun, Wenguan Wang, Luc Van Gool. ETH Zurich </td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>2nd</td>-->
<!-- <td>Wonho Bae*, Junhyug Noh*, Jinhwan Seo, and Gunhee Kim. Seoul National University, Vision & Learning Lab</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>3rd</td>-->
<!-- <td>Mariia Dobko, Ostap Viniavskyi, Oles Dobosevych. The Machine Learning Lab at Ukrainian Catholic University, SoftServe</td>-->
<!-- </tr>-->
<!-- </tbody>-->
<!-- </table>-->
<!-- </div>-->
<!-- <div class="trend-entry d-flex">-->
<!-- <table class="table">-->
<!-- <thead>-->
<!-- <tr>-->
<!-- <th scope="col" colspan="2"> Track2: Weakly-supervised Scene Parsing Challenge</th>-->
<!-- </tr>-->
<!-- </thead>-->
<!-- <tbody>-->
<!-- <tr>-->
<!-- <td>1st</td>-->
<!-- <td>Hao Zhao, Ming Lu, Anbang Yao, Yiwen Guo, Yurong Chen, Li Zhang. Tsinghua University</td>-->
<!-- </tr>-->
<!-- </tbody>-->
<!-- </table>-->
<!-- </div>-->
<!-- <div class="trend-entry d-flex">-->
<!-- <table class="table">-->
<!-- <thead>-->
<!-- <tr>-->
<!-- <th scope="col" colspan="2"> Track3: Weakly-supervised Object Localization Challenge</th>-->
<!-- </tr>-->
<!-- </thead>-->
<!-- <tbody>-->
<!-- <tr>-->
<!-- <td>1st</td>-->
<!-- <td>Wonho Bae*, Junhyug Noh*, Jinhwan Seo, and Gunhee Kim. Seoul National University, Vision & Learning Lab</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>2nd</td>-->
<!-- <td>Chuangchuang Tan <sup>1*</sup>, Tao Ruan <sup>1*</sup>, Guanghua Gu <sup>2</sup>, Shikui Wei <sup>1</sup>, Yao Zhao<sup>1</sup>. <sup>1</sup>Beijing Jiaotong University, <sup>2</sup>Yanshan University</td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td>3rd</td>-->
<!-- <td>Zhendong Wang, Zhenyuan Chen, Chen Gong. Nanjing University Of Science and Technology, LEAP Group@PCA Lab</td>-->
<!-- </tr>-->
<!-- </tbody>-->
<!-- </table>-->
<!-- </div>-->
<!-- </div>-->
<!-- <div class="col-lg-10" id="papers" style="padding-top:80px;margin-top:-80px;">-->
<!-- <div class="section-title">-->
<!-- <h2>Papers</h2>-->
<!-- </div>-->
<!-- <div class="trend-entry d-flex">-->
<!-- <table>-->
<!-- <tr>-->
<!-- <td><strong> 1st (Track1) </strong> </td>-->
<!-- <td>-->
<!-- <div>-->
<!-- <p>-->
<!-- Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation <strong class="text-danger"> (Best Paper Award)</strong> <br/>-->
<!-- Guolei Sun , Wenguan Wang , Luc Van Gool <br/>-->
<!-- The 2020 Learning from Imperfect Data (LID) Challenge - CVPR Workshops, 2020<br/>-->
<!-- [<a href="papers/Track-1-1-(cvpr2020)LID-wsss-cvl-eth.pdf">PDF</a>] [<a data-toggle="collapse" href="#bib1" aria-expanded="false" aria-controls="bib1">BibTex</a>]-->
<!-- <div class="collapse" id="bib1">-->
<!-- <div class="panel panel-default panel-body">-->
<!-- @article{sun2020lid, <br/>-->
<!-- author = {Sun, Guolei and Wang, Wenguan and Van Gool, Luc},<br/>-->
<!-- title = {Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation},<br/>-->
<!-- journal = {The 2020 Learning from Imperfect Data (LID) Challenge - CVPR Workshops},<br/>-->
<!-- year = {2020}<br/>-->
<!-- }-->
<!-- </div>-->
<!-- </div>-->
<!-- </p>-->
<!-- </div>-->
<!-- </td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td><strong>3rd (Track1)</strong> </td>-->
<!-- <td>-->
<!-- <div>-->
<!-- <p>-->
<!-- NoPeopleAllowed: The Three-Step Approach to Weakly Supervised Semantic Segmentation <br/>-->
<!-- Mariia Dobko, Ostap Viniavskyi, Oles Dobosevych <br/>-->
<!-- The 2020 Learning from Imperfect Data (LID) Challenge - CVPR Workshops, 2020<br/>-->
<!-- [<a href="papers/Track-1-3-NoPeopleAllowed- The Three-Step Approach to Weakly Supervised SemanticSegmentation.pdf">PDF</a>] [<a data-toggle="collapse" href="#bib2" aria-expanded="false" aria-controls="bib2">BibTex</a>]-->
<!-- <div class="collapse" id="bib2">-->
<!-- <div class="panel panel-default panel-body">-->
<!-- @article{dobko2020lid, <br/>-->
<!-- author = {Dobko, Mariia and Viniavskyi, Ostap and Dobosevych, Oles}, <br/>-->
<!-- title = {NoPeopleAllowed: The Three-Step Approach to Weakly Supervised Semantic Segmentation},<br/>-->
<!-- journal = {The 2020 Learning from Imperfect Data (LID) Challenge - CVPR Workshops},<br/>-->
<!-- year = {2020}<br/>-->
<!-- }-->
<!-- </div>-->
<!-- </div>-->
<!-- </p>-->
<!-- </div>-->
<!-- </td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td> <strong> 1st (Track2) </strong></td>-->
<!-- <td>-->
<!-- <div>-->
<!-- <p>-->
<!-- Pointly-supervised Scene Parsing with Uncertainty Mixture <br/>-->
<!-- Hao Zhao, Ming Lu, Anbang Yao, Yiwen Guo, Yurong Chen, Li Zhang <br/>-->
<!-- The 2020 Learning from Imperfect Data (LID) Challenge - CVPR Workshops, 2020<br/>-->
<!-- [<a href="papers/Track-2-1-unmix-lid.pdf">PDF</a>] [<a data-toggle="collapse" href="#bib3" aria-expanded="false" aria-controls="bib3">BibTex</a>]-->
<!-- <div class="collapse" id="bib3">-->
<!-- <div class="panel panel-default panel-body">-->
<!-- @article{zhao2020lid, <br/>-->
<!-- author = {Zhao, Hao and Lu, Ming and Yao, Anbang and Guo, Yiwen and Chen, Yurong, Zhang, Li}, <br/>-->
<!-- title = {Pointly-supervised Scene Parsing with Uncertainty Mixture},<br/>-->
<!-- journal = {The 2020 Learning from Imperfect Data (LID) Challenge - CVPR Workshops},<br/>-->
<!-- year = {2020}<br/>-->
<!-- }-->
<!-- </div>-->
<!-- </div>-->
<!-- </p>-->
<!-- </div>-->
<!-- </td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td> <strong>1st (Track3)</strong></td>-->
<!-- <td>-->
<!-- <div>-->
<!-- <p>-->
<!-- Revisiting Class Activation Mapping for Learning from Imperfect Data <br/>-->
<!-- Wonho Bae*, Junhyug Noh*, Jinhwan Seo, Gunhee Kim <br/>-->
<!-- The 2020 Learning from Imperfect Data (LID) Challenge - CVPR Workshops, 2020<br/>-->
<!-- [<a href="papers/Track-3-1-lid_paper_snuvl.pdf">PDF</a>] [<a data-toggle="collapse" href="#bib4" aria-expanded="false" aria-controls="bib4">BibTex</a>]-->
<!-- <div class="collapse" id="bib4">-->
<!-- <div class="panel panel-default panel-body">-->
<!-- @article{bae2020lid, <br/>-->
<!-- author = {Bae, Wonho and Noh, Junhyug and Seo, Jinhwan and Kim, Gunhee}, <br/>-->
<!-- title = {Revisiting Class Activation Mapping for Learning from Imperfect Data},<br/>-->
<!-- journal = {The 2020 Learning from Imperfect Data (LID) Challenge - CVPR Workshops},<br/>-->
<!-- year = {2020}<br/>-->
<!-- }-->
<!-- </div>-->
<!-- </div>-->
<!-- </p>-->
<!-- </div>-->
<!-- </td>-->
<!-- </tr>-->
<!-- <tr>-->
<!-- <td><strong>5th (Track3)</strong></td>-->
<!-- <td>-->
<!-- <div>-->
<!-- <p>-->
<!-- Object Localization with weakly supervised learning <br/>-->
<!-- Jun He, Huanqing Yan <br/>-->
<!-- The 2020 Learning from Imperfect Data (LID) Challenge - CVPR Workshops, 2020<br/>-->
<!-- [<a href="papers/Object Localization with weakly supervised learning.pdf">PDF</a>] [<a data-toggle="collapse" href="#bib5" aria-expanded="false" aria-controls="bib5">BibTex</a>]-->
<!-- <div class="collapse" id="bib5">-->
<!-- <div class="panel panel-default panel-body">-->
<!-- @article{he2020lid, <br/>-->
<!-- author = {He, Jun and Yan, Huanqing}, <br/>-->
<!-- title = {Object Localization with weakly supervised learning},<br/>-->
<!-- journal = {The 2020 Learning from Imperfect Data (LID) Challenge - CVPR Workshops},<br/>-->
<!-- year = {2020}<br/>-->
<!-- }-->
<!-- </div>-->
<!-- </div>-->
<!-- </p>-->
<!-- </div>-->
<!-- </td>-->
<!-- </tr>-->
<!-- </table>-->
<!-- </div>-->
<!-- </div>-->
<!------------------------ overview ----------------------->
<div class="col-lg-12">
<div class="section-title">
<h2>Overview</h2>
</div>
<div class="trend-entry d-flex">
<div class="trend-contents">
<p>
   Due to the global pandemic of COVID-19, people are recommended to wear facial masks for health and safety reasons, and the situation will continue in the long term. This apparently makes conventional facial landmark localization unfaithful and inefficient. However, facial landmark localization is a very crucial step of facial recognition technology, which is very helpful in tracking the close contacts of COVID-19 patients to prevent the spread of the virus. Besides, it is also wildly used in facial pose estimation, face image synthesis, etc. Therefore, we are hosting the 3rd grand challenge of 106-point facial landmark localization in conjunction with ICME 2021, aiming to improve the accuracy and efficiency of facial landmark localization in real-world situations, especially on masked faces.
<br>
   The 2021 edition contains about 27,000 images of three kinds, real-masked, virtual-masked, and non-masked, which are largely varied in identity, pose, expression, and occlusion.
We sincerely invite academic and industrial practitioners to participate in and together push the frontier along this direction.
</p>
</div>
</div>
</div>
<div class="section-title">
<img src="images/face1.png" class="icon-align-center" width="95%">
</div>
<!------------------------ import dates --------------------->
<div class="col-lg-12" id="dates" style="padding-top:80px;margin-top:-80px;">
<div class="section-title">
<h2>Important Dates</h2>
</div>
<div class="trend-entry d-flex">
<table class="table table-striped">
<thead>
<tr>
<th scope="col"> Description</th>
<th scope="col"> Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Challenge Begin</td>
<td>March 1, 2021</td>
</tr>
<tr>
<td>Validation phase</td>
<td> March 1 - March 31, 2021</td>
</tr>
<tr>
<td>Test phase</td>
<td>April 1 - April 30, 2021</td>
</tr>
<tr>
<td>Model & Paper submission deadline</td>
<td>April 7, 2021</td>
</tr>
<tr>
<td>Final evaluation results & Paper acceptance announcement</td>
<td>April 30, 2021</td>
</tr>
<tr>
<td>Camera-ready paper submission deadline</td>
<td>May 7, 2021</td>
</tr>
<!-- <tr>
<td>Poster</td>
<td>10:00-11:00, June 16, 2020</td>
</tr> -->
</tbody>
</table>
</div>
<!-- <div class="trend-entry d-flex">-->
<!-- <div class="trend-contents">-->
<!-- <p>-->
<!--   During the validation phase, participants could send their results on the validation set to-->
<!-- fllc3_icme@163.com,-->
<!-- and we will return the performance to the participants by updating the leaderboard. Each team could only submit once a day.-->
<!-- <br>-->
<!--   During the test phase, participants need to submit their model and paper within a week, from April 1 - April 7.-->
<!-- It will be used for the final evaluation.-->
<!-- Specifically, all the training materials including codes, models, and technical reports need to be sent to us before April 7, 2021.-->
<!-- To prevent cheating on the test set, the test images will not be released to participants.-->
<!-- </p>-->
<!-- </div>-->
<!-- </div>-->
</div>
<!------------------------------ award ------------------------------------------>
<div class="col-lg-12" id="awards" style="padding-top:80px;margin-top:-80px;">
<div class="section-title">
<h2>awards</h2>
</div>
<div class="section-title">
<img src="images/prize.png" class="icon-align-center">
</div>
</div>
<!---------------------------- organizer ---------------------------------------->
<div class="col-lg-12" id="organizer" style="padding-top:80px;margin-top:-80px;">
<div class="section-title">
<br>
<h2>organizers</h2>
</div>
<img src="images/organizer.png" width="100%">
<!-- <div class="row justify-content-md-center">-->
<!-- <div class="col-md-3">-->
<!-- <div class="card">-->
<!-- <img src="images/lyl.png" width="100%"/>-->
<!-- <div class="post-meta">-->
<!-- <span class="d-block"><a href="https://github.com/JDAI-CV/lapa-dataset">Yinglu Liu</a> </span>-->
<!-- <span class="date-read"> DJ AI Research</span>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!-- <div class="col-md-3">-->
<!-- <div class="card">-->
<!-- <img src="images/xmc.jpg" width="100%"/>-->
<!-- <div class="post-meta">-->
<!-- <span class="d-block"><a href="https://mitchellx.github.io/">Mingcan Xiang</a> </span>-->
<!-- <span class="date-read"> DJ AI Research</span>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!-- <div class="col-md-3">-->
<!-- <div class="card">-->
<!-- <img src="images/shl.jpg" width="100%"/>-->
<!-- <div class="post-meta">-->
<!-- <span class="d-block"><a href="https://sites.google.com/view/hailin-shi">Hailin Shi</a> </span>-->
<!-- <span class="date-read"> DJ AI Research</span>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!-- <div class="col-md-3">-->
<!-- <div class="card">-->
<!-- <img src="images/lw.jpg" width="100%"/>-->
<!-- <div class="post-meta">-->
<!-- <span class="d-block"><a href="http://liuwu.weebly.com/">Wu Liu</a> </span>-->
<!-- <span class="date-read"> DJ AI Research</span>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!-- <div class="col-md-3">-->
<!-- <div class="card">-->
<!-- <img src="images/zxy.JPG" width="100%"/>-->
<!-- <div class="post-meta">-->
<!-- <span class="d-block"><a href="http://www.cbsr.ia.ac.cn/users/xiangyuzhu/">Xiangyu Zhu</a> </span>-->
<!-- <span class="date-read"> Institute of Automation, CAS</span>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!-- <div class="row" style="margin-top: 40px">-->
<!-- <div class="col-md-3">-->
<!-- <div class="card">-->
<!--<!– <img src="LID2019/img/liuting.jpg" width="100%"/> –>-->
<!-- <div class="post-meta">-->
<!-- <span class="d-block"> Ting Liu </span>-->
<!-- <span >Webmaster</span>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
<!-- </div>-->
</div>
</div>
<!------------------------------ sponsor ------------------------------------------>
<div class="section-title">
<br>
<img src="images/logo.png" class="icon-align-center">
</div>
<!-- ----------------------------email-------------------------------->
<br><br>
<p style="text-align: center">Please feel free to contact us if you have any questions!    <strong>fllc3_icme@163.com</strong> </p>
<!------------------------------- boarder ---------------------------------------->
<div class="col-lg-12">
<div style="display:inline-block;width:500px;">
<script type="text/javascript" src="//rc.rev
olvermaps.com/0/0/7.js?i=2hlmeh3dic1&m=0&c=ff0000&cr1=ffffff&br=19&sx=0"
async="async"></script>
</div>
</div>
</div>
</div>
<!-- END section -->
<div class="footer">
<div class="container">
<div class="row">
<div class="col-12">
<div class="copyright">
<p>
<!-- Link back to Colorlib can't be removed. Template is licensed under CC BY 3.0. -->
Copyright ©<script>document.write(new Date().getFullYear());</script>
All rights reserved | This template is made with <i class="icon-heart text-danger"
aria-hidden="true"></i> by <a
href="https://colorlib.com" target="_blank">Colorlib</a>
<!-- Link back to Colorlib can't be removed. Template is licensed under CC BY 3.0. -->
</p>
</div>
</div>
</div>
</div>
</div>
</div>
<!-- .site-wrap -->
<!-- loader -->
<div id="loader" class="show fullscreen">
<svg class="circular" width="48px" height="48px">
<circle class="path-bg" cx="24" cy="24" r="22" fill="none" stroke-width="4" stroke="#eeeeee"/>
<circle class="path" cx="24" cy="24" r="22" fill="none" stroke-width="4" stroke-miterlimit="10"
stroke="#ff5e15"/>
</svg>
</div>
<script src="js/jquery-3.3.1.min.js"></script>
<script src="js/jquery-migrate-3.0.1.min.js"></script>
<script src="js/jquery-ui.js"></script>
<script src="js/popper.min.js"></script>
<script src="js/bootstrap.min.js"></script>
<script src="js/owl.carousel.min.js"></script>
<script src="js/jquery.stellar.min.js"></script>
<script src="js/jquery.countdown.min.js"></script>
<script src="js/bootstrap-datepicker.min.js"></script>
<script src="js/jquery.easing.1.3.js"></script>
<script src="js/aos.js"></script>
<script src="js/jquery.fancybox.min.js"></script>
<script src="js/jquery.sticky.js"></script>
<script src="js/jquery.mb.YTPlayer.min.js"></script>
<script src="js/main.js"></script>
</body>
</html>