-
Notifications
You must be signed in to change notification settings - Fork 0
/
_pkgdown.yml
171 lines (135 loc) · 3.91 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
url: https://motrpac.github.io/MotrpacRatTraining6mo/
template:
bootstrap: 5
home:
links:
- text: Publications
href: https://www.nature.com/collections/cfiiibcebh
reference:
- title: Load data
desc: Load data and analysis results used in the publication
contents:
- list_available_data
- subtitle: Load sample-level molecular data
contents:
- load_sample_data
- combine_normalized_data
- plot_feature_normalized_data
- subtitle: Load feature-level annotation
contents:
- load_feature_annotation
- load_atac_feature_annotation
- load_methyl_feature_annotation
- subtitle: Load differential analysis results
contents:
- combine_da_results
- load_training_da
- load_metab_da
- plot_feature_logfc
- subtitle: Load epigenetic data
desc: Load full epigenetic datasets from Google Cloud Storage
contents:
- load_epigen_da
- load_methyl_raw_data
- subtitle: Load data from GCS
desc: Download and read in RData or text files from Google Cloud Storage
contents:
- get_file_from_url
- get_rdata_from_url
- title: Perform differential analysis
- subtitle: Wrapper functions
desc: Main functions to perform differential analysis for each data type
contents:
- atac_timewise_da
- atac_training_da
- immuno_timewise_da
- immuno_training_da
- metab_timewise_da
- metab_training_da
- metab_meta_regression
- proteomics_timewise_da
- proteomics_training_da
- rrbs_differential_analysis
- transcript_timewise_da
- transcript_training_da
- subtitle: Ancillary functions
desc: Ancillary functions used within or after the above wrapper functions
contents:
- atac_prep_data
- analyze_tile
- fix_covariates
- merge_sites_by_clusters
- run_deseq
- transcript_prep_data
- merge_two_dea_dfs
- metabolite_meta_regression
- forest_plot
- subtitle: Metabolomics meta-analysis
desc: >
Functions used to perform metabolomics meta-analysis,
which was abandoned in favor of meta-regression.
contents:
- metab_meta_analysis
- title: Graphical clustering
desc: >
Perform and explore the Bayesian graphical clustering
analysis effectively used to transforms continuous
z-scores (normalized effect sizes) into discrete states
to summarize trajectories of differential features in a graph.
- subtitle: Perform Bayesian graphical clustering
contents:
- bayesian_graphical_clustering
- repfdr_wrapper
- subtitle: Extract graphical clusters
contents:
- extract_top_trajectories
- extract_main_clusters
- get_all_trajectories
- extract_tissue_sets
- filter_edge_sets_by_trajectories
- get_trajectory_sizes_from_edge_sets
- limit_sets_by_regex
- subtitle: Plot graphical clusters
contents:
- get_tree_plot_for_tissue
- plot_features_per_cluster
- plot_feature_trajectories
- title: Pathway enrichment
- subtitle: Perform pathway enrichment analysis
contents:
- cluster_pathway_enrichment
- custom_cluster_pathway_enrichment
- gene_pathway_enrichment
- run_fella
- make_kegg_db
- subtitle: Visualize pathway enrichment results
contents:
- enrichment_network_vis
- check_cluster_res_format
- subtitle: Perform ssGSEA2 and PTM-SEA
contents:
- ssGSEA2_wrapper
- prepare_gsea_input
- prepare_ptmsea_input
- load_uniprot_human_fasta
- find_flanks
- title: Manipulate data
- subtitle: Normalize data
contents:
- atac_normalize_counts
- transcript_normalize_counts
- subtitle: Call sample outliers
desc: Call sample outliers in principal component space
contents:
- call_pca_outliers
- plot_pcs
- matches("call_outliers")
- subtitle: Miscellaneous
contents:
- get_peak_annotations
- filter_outliers
- viallabel_to_pid
- df_to_numeric
- title: Built-in data objects
contents:
- STOPWORDS