-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
129 lines (110 loc) · 4.94 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/usr/bin/python
import numpy as np
import torch, os
from torch import nn
from torch import optim
import torch.nn.functional as F
from torchvision import datasets, transforms, models
from PIL import Image
device = torch.device('cpu')
model = models.resnet50(pretrained=True)
data_dir = '/chess'
'''
Loads the data into train and validation dataset loaders.
Splits the data so that 80% of images go to trainloader and 20% to testloader (validation)
'''
def load_split_train_test(datadir, valid_size = .2):
copy_and_rotate_images(datadir)
train_transforms = transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor()])
test_transforms = transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor()])
train_data = datasets.ImageFolder(datadir, transform=train_transforms)
test_data = datasets.ImageFolder(datadir, transform=test_transforms)
num_train = len(train_data)
indices = list(range(num_train))
split = int(np.floor(valid_size * num_train))
np.random.shuffle(indices)
from torch.utils.data.sampler import SubsetRandomSampler
train_idx = indices[split:]
test_idx = indices[:split]
train_sampler = SubsetRandomSampler(train_idx)
test_sampler = SubsetRandomSampler(test_idx)
trainloader = torch.utils.data.DataLoader(train_data, sampler=train_sampler, batch_size=64)
testloader = torch.utils.data.DataLoader(test_data, sampler=test_sampler, batch_size=64)
return trainloader, testloader
'''
Creates copies of every .jpg image in the dataset rotated by 90, 180 and 270 degrees.
A suffix is added to the end of the new files' name.
'''
def copy_and_rotate_images(datadir):
CATEGORIES = ["black_pawns", "black_knights", "black_rooks", "black_bishops", "black_queens", "black_kings", "white_pawns", "white_knights", "white_rooks", "white_bishops", "white_queens", "white_kings", "empty_tiles"]
for cat in range(len(CATEGORIES)):
thisdir = datadir + "/" + CATEGORIES[cat]
for file in os.listdir(thisdir):
if (os.fsdecode(file).endswith(".jpg")):
PATH = thisdir + "/" + file
CUT_PATH = PATH[:-4] # Image path with the ".jpg" suffix emitted
# Skip if this image has already been rotated before or this image is a rotated clone
if os.path.exists(CUT_PATH + "_90.jpg") or CUT_PATH.endswith(("_90", "_180", "_270")):
continue
img = Image.open(PATH)
img_90 = img.transpose(Image.ROTATE_90)
img_180 = img.transpose(Image.ROTATE_180)
img_270 = img.transpose(Image.ROTATE_270)
img_90.save(CUT_PATH + '_90.jpg')
img_180.save(CUT_PATH + '_180.jpg')
img_270.save(CUT_PATH + '_270.jpg')
trainloader, testloader = load_split_train_test(data_dir, .2)
print(trainloader.dataset.classes)
device = torch.device('cpu')
model = models.resnet50(pretrained=True)
for param in model.parameters():
param.requires_grad = False
model.fc = nn.Sequential(nn.Linear(2048, 512),
nn.ReLU(),
nn.Dropout(0.2),
nn.Linear(512, 13),
nn.LogSoftmax(dim=1))
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.fc.parameters(), lr=0.003)
model.to(device)
epochs = 1
steps = 0
running_loss = 0
print_every = 10
train_losses = []
test_losses = []
for epoch in range(epochs):
for inputs, labels in trainloader:
steps += 1
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
logps = model.forward(inputs)
loss = criterion(logps, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if steps % print_every == 0:
test_loss = 0
accuracy = 0
model.eval()
with torch.no_grad():
for inputs, labels in testloader:
inputs = inputs.to(device)
labels = labels.to(device)
logps = model.forward(inputs)
batch_loss = criterion(logps, labels)
test_loss += batch_loss.item()
ps = torch.exp(logps)
top_p, top_class = ps.topk(1, dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy += torch.mean(equals.type(torch.FloatTensor)).item()
train_losses.append(running_loss/len(trainloader))
test_losses.append(test_loss/len(testloader))
print(f"Epoch {epoch+1}/{epochs}.. "
f"Train loss: {running_loss/print_every:.3f}.. "
f"Test loss: {test_loss/len(testloader):.3f}.. "
f"Test accuracy: {accuracy/len(testloader):.3f}")
running_loss = 0
model.train()
torch.save(model, 'pytorch_chessmodel.pth')