-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcdp3.mod
314 lines (254 loc) · 8.39 KB
/
cdp3.mod
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
: Calcium ion accumulation with endogenous buffers, radial diffusion and pump
COMMENT
The basic code of Example 9.8 and Example 9.9 from NEURON book was adapted as:
1) Extended using parameters from Schmidt et al. 2003.
2) Pump rate was tuned according to data from Maeda et al. 1999
Reference: Anwar H, Hong S, De Schutter E (2010) Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cell. Cerebellum*
*Article available as Open Access
PubMed link: http://www.ncbi.nlm.nih.gov/pubmed/20981513
Written by Haroon Anwar, Computational Neuroscience Unit, Okinawa Institute of Science and Technology, 2010.
Contact: Haroon Anwar (anwar@oist.jp)
ENDCOMMENT
NEURON {
SUFFIX cdp3
USEION ca READ cao, cai, ica WRITE cai
RANGE ica_pmp
GLOBAL vrat, TotalPump
: vrat must be GLOBAL--see INITIAL block
: however TotalBuffer and TotalPump may be RANGE
}
DEFINE Nannuli 11
UNITS {
(mol) = (1)
(molar) = (1/liter)
(mM) = (millimolar)
(um) = (micron)
(mA) = (milliamp)
FARADAY = (faraday) (10000 coulomb)
PI = (pi) (1)
}
PARAMETER {
celsius =37 (degC)
:cainull =2.5e-4 (mM)
cainull = 45e-6 (mM)
mginull =.59 (mM)
DCa = .233 (um2/ms)
Dbtc = 0.007 (um2/ms)
Ddmnpe = 0.08 (um2/ms)
Dcbd1 = .028 (um2/ms)
Dcbd2 = 0 (um2/ms)
Dpar = .043 (um2/ms)
: values for benzothiazole coumarin (BTC)
BTCnull = 0 (mM)
b1 = 5.33 (/ms mM)
b2 = 0.08 (/ms)
: values for caged compound DMNPE-4
DMNPEnull = 0 (mM)
c1 = 5.63 (/ms mM)
c2 = 0.107e-3 (/ms)
: values for Calbindin (2 high and 2 low affinity binding sites)
CBnull= .16 (mM)
nf1 =43.5 (/ms mM)
nf2 =3.58e-2 (/ms)
ns1 =5.5 (/ms mM)
ns2 =0.26e-2 (/ms)
: values for Parvalbumin
PVnull = .08 (mM)
m1 = 1.07e2 (/ms mM)
m2 = 9.5e-4 (/ms)
p1 = 0.8 (/ms mM)
p2 = 2.5e-2 (/ms)
kpmp1 = 3e-3 (/mM-ms)
kpmp2 = 1.75e-5 (/ms)
kpmp3 = 7.255e-5 (/ms)
: to eliminate pump, set TotalPump to 0 in hoc
TotalPump = 1e-9 (mol/cm2)
}
ASSIGNED {
diam (um)
ica (mA/cm2)
ica_pmp (mA/cm2)
: ica_pmp_last (mA/cm2)
parea (um) : pump area per unit length
cai (mM)
cao (mM)
mgi (mM)
vrat[Nannuli] (1) : dimensionless
: numeric value of vrat[i] equals the volume
: of annulus i of a 1um diameter cylinder
: multiply by diam^2 to get volume per um length
}
: CONSTANT { cao = 2 (mM) }
STATE {
: ca[0] is equivalent to cai
: ca[] are very small, so specify absolute tolerance
: let it be ~1.5 - 2 orders of magnitude smaller than baseline level
ca[Nannuli] (mM)
mg[Nannuli] (mM) <1e-7>
BTC[Nannuli] (mM)
BTC_ca[Nannuli] (mM)
DMNPE[Nannuli] (mM)
DMNPE_ca[Nannuli] (mM)
CB[Nannuli] (mM)
CB_f_ca[Nannuli] (mM)
CB_ca_s[Nannuli] (mM)
CB_ca_ca[Nannuli] (mM)
iCB[Nannuli] (mM)
iCB_f_ca[Nannuli] (mM)
iCB_ca_s[Nannuli] (mM)
iCB_ca_ca[Nannuli] (mM)
PV[Nannuli] (mM)
PV_ca[Nannuli] (mM)
PV_mg[Nannuli] (mM)
pump (mol/cm2) <1e-15>
pumpca (mol/cm2) <1e-15>
}
BREAKPOINT {
SOLVE state METHOD sparse
: ica_pmp_last = ica_pmp
: ica = ica_pmp
}
LOCAL factors_done
INITIAL {
if (factors_done == 0) { : flag becomes 1 in the first segment
factors_done = 1 : all subsequent segments will have
factors() : vrat = 0 unless vrat is GLOBAL
}
FROM i=0 TO Nannuli-1 {
ca[i] = cainull
mg[i] = mginull
BTC[i] = ssBTC()
BTC_ca[i] = ssBTCca()
DMNPE[i] = ssDMNPE()
DMNPE_ca[i] = ssDMNPEca()
CB[i] = 0.8*ssCB( kdf(), kds())
CB_f_ca[i] = 0.8*ssCBfast( kdf(), kds())
CB_ca_s[i] = 0.8*ssCBslow( kdf(), kds())
CB_ca_ca[i] = 0.8*ssCBca( kdf(), kds())
iCB[i] = 0.2*ssCB( kdf(), kds())
iCB_f_ca[i] = 0.2*ssCBfast( kdf(), kds())
iCB_ca_s[i] = 0.2*ssCBslow( kdf(), kds())
iCB_ca_ca[i] = 0.2*ssCBca(kdf(), kds())
PV[i] = ssPV( kdc(), kdm())
PV_ca[i] = ssPVca(kdc(), kdm())
PV_mg[i] = ssPVmg(kdc(), kdm())
}
parea = PI*diam
ica = 0
ica_pmp = 0
: ica_pmp_last = 0
pump = TotalPump
pumpca = 0
}
LOCAL frat[Nannuli] : scales the rate constants for model geometry
PROCEDURE factors() {
LOCAL r, dr2
r = 1/2 : starts at edge (half diam)
dr2 = r/(Nannuli-1)/2 : full thickness of outermost annulus,
: half thickness of all other annuli
vrat[0] = 0
frat[0] = 2*r
FROM i=0 TO Nannuli-2 {
vrat[i] = vrat[i] + PI*(r-dr2/2)*2*dr2 : interior half
r = r - dr2
frat[i+1] = 2*PI*r/(2*dr2) : outer radius of annulus
: div by distance between centers
r = r - dr2
vrat[i+1] = PI*(r+dr2/2)*2*dr2 : outer half of annulus
}
}
LOCAL dsq, dsqvol : can't define local variable in KINETIC block
: or use in COMPARTMENT statement
KINETIC state {
COMPARTMENT i, diam*diam*vrat[i] {ca mg BTC BTC_ca DMNPE DMNPE_ca CB CB_f_ca CB_ca_s CB_ca_ca iCB iCB_f_ca iCB_ca_s iCB_ca_ca PV PV_ca PV_mg}
COMPARTMENT (1e10)*parea {pump pumpca}
:pump
~ ca[0] + pump <-> pumpca (kpmp1*parea*(1e10), kpmp2*parea*(1e10))
~ pumpca <-> pump (kpmp3*parea*(1e10), 0)
CONSERVE pump + pumpca = TotalPump * parea * (1e10)
ica_pmp = 2*FARADAY*(f_flux - b_flux)/parea
: all currents except pump
: ica is Ca efflux
~ ca[0] << (-ica*PI*diam/(2*FARADAY))
:RADIAL DIFFUSION OF ca, mg and mobile buffers
FROM i=0 TO Nannuli-2 {
~ ca[i] <-> ca[i+1] (DCa*frat[i+1], DCa*frat[i+1])
~ mg[i] <-> mg[i+1] (DCa*frat[i+1], DCa*frat[i+1])
~ BTC[i] <-> BTC[i+1] (Dbtc*frat[i+1], Dbtc*frat[i+1])
~ BTC_ca[i] <-> BTC_ca[i+1] (Dbtc*frat[i+1], Dbtc*frat[i+1])
~ DMNPE[i] <-> DMNPE[i+1] (Ddmnpe*frat[i+1], Ddmnpe*frat[i+1])
~ DMNPE_ca[i] <-> DMNPE_ca[i+1] (Ddmnpe*frat[i+1], Ddmnpe*frat[i+1])
~ CB[i] <-> CB[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1])
~ CB_f_ca[i] <-> CB_f_ca[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1])
~ CB_ca_s[i] <-> CB_ca_s[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1])
~ CB_ca_ca[i] <-> CB_ca_ca[i+1] (Dcbd1*frat[i+1], Dcbd1*frat[i+1])
~ PV[i] <-> PV[i+1] (Dpar*frat[i+1], Dpar*frat[i+1])
~ PV_ca[i] <-> PV_ca[i+1] (Dpar*frat[i+1], Dpar*frat[i+1])
~ PV_mg[i] <-> PV_mg[i+1] (Dpar*frat[i+1], Dpar*frat[i+1])
}
dsq = diam*diam
FROM i=0 TO Nannuli-1 {
dsqvol = dsq*vrat[i]
~ ca[i] + BTC[i] <-> BTC_ca[i] (b1*dsqvol, b2*dsqvol)
~ ca[i] + DMNPE[i] <-> DMNPE_ca[i] (c1*dsqvol, c2*dsqvol)
:Calbindin
~ ca[i] + CB[i] <-> CB_ca_s[i] (nf1*dsqvol, nf2*dsqvol)
~ ca[i] + CB[i] <-> CB_f_ca[i] (ns1*dsqvol, ns2*dsqvol)
~ ca[i] + CB_f_ca[i] <-> CB_ca_ca[i] (nf1*dsqvol, nf2*dsqvol)
~ ca[i] + CB_ca_s[i] <-> CB_ca_ca[i] (ns1*dsqvol, ns2*dsqvol)
~ ca[i] + iCB[i] <-> iCB_ca_s[i] (nf1*dsqvol, nf2*dsqvol)
~ ca[i] + iCB[i] <-> iCB_f_ca[i] (ns1*dsqvol, ns2*dsqvol)
~ ca[i] + iCB_f_ca[i] <-> iCB_ca_ca[i] (nf1*dsqvol, nf2*dsqvol)
~ ca[i] + iCB_ca_s[i] <-> iCB_ca_ca[i] (ns1*dsqvol, ns2*dsqvol)
:Paravalbumin
~ ca[i] + PV[i] <-> PV_ca[i] (m1*dsqvol, m2*dsqvol)
~ mg[i] + PV[i] <-> PV_mg[i] (p1*dsqvol, p2*dsqvol)
}
cai = ca[0]
mgi = mg[0]
}
FUNCTION ssBTC() (mM) {
ssBTC = BTCnull/(1+((b1/b2)*cainull))
}
FUNCTION ssBTCca() (mM) {
ssBTCca = BTCnull/(1+(b2/(b1*cainull)))
}
FUNCTION ssDMNPE() (mM) {
ssDMNPE = DMNPEnull/(1+((c1/c2)*cainull))
}
FUNCTION ssDMNPEca() (mM) {
ssDMNPEca = DMNPEnull/(1+(c2/(c1*cainull)))
}
FUNCTION ssCB( kdf(), kds()) (mM) {
ssCB = CBnull/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBfast( kdf(), kds()) (mM) {
ssCBfast = (CBnull*kds())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBslow( kdf(), kds()) (mM) {
ssCBslow = (CBnull*kdf())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION ssCBca(kdf(), kds()) (mM) {
ssCBca = (CBnull*kdf()*kds())/(1+kdf()+kds()+(kdf()*kds()))
}
FUNCTION kdf() (1) {
kdf = (cainull*nf1)/nf2
}
FUNCTION kds() (1) {
kds = (cainull*ns1)/ns2
}
FUNCTION kdc() (1) {
kdc = (cainull*m1)/m2
}
FUNCTION kdm() (1) {
kdm = (mginull*p1)/p2
}
FUNCTION ssPV( kdc(), kdm()) (mM) {
ssPV = PVnull/(1+kdc()+kdm())
}
FUNCTION ssPVca( kdc(), kdm()) (mM) {
ssPVca = (PVnull*kdc())/(1+kdc()+kdm())
}
FUNCTION ssPVmg( kdc(), kdm()) (mM) {
ssPVmg = (PVnull*kdm())/(1+kdc()+kdm())
}