-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathVSmn_inh.ode
191 lines (175 loc) · 5.86 KB
/
VSmn_inh.ode
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# 2-Compartment Motoneuron Model - Sharmila Venugopal (svenugopal10@gmail.com)
# Cite: S Venugopal et al., J Neurophysiology, 2011
# Applied current pulse from holding current i0 with magnitude ip
# turns on at pon and off at poff
# Ca concentration in micromoles/liter
#
# version for computing bifurcation diagrams
#
#soma equations
dvs/dt=(iapp+ins(vs,snah,scam,scah)+outs(vs,sn,sca)-gl*(vs-(vl+vrest))+gc*(vd-vs)/parea)/cm
dsnah/dt=(snahinf(vs)-snah)/snahtau(vs)
dsn/dt=(sninf(vs)-sn)/sntau(vs)
dscam/dt=(scaminf(vs)-scam)/camtau
dscah/dt=(scahinf(vs)-scah)/cahtau
dsca/dt=-f*alpha*sica(vs,scam,scah)-f*kca*sca
ds/dt=alphamn*(1-s)*sinf(vs)-betamn*s
#dendrite equations
#dvd/dt=(ind(vd,dcam,dcah,dcas)+outd(vd,dn,dca)-INaP-gl*(vd-(vl+vrest))+gc*(vs-vd)/(1.0-parea))/cm
dvd/dt=(ind(vd,dcas)+outd(vd,dn,dca)-pernap*gNaP*mnap*hnap*(Vd-(vna+vrest))-gl*(vd-(vl+vrest))-Ir+gc*(vs-vd)/(1.0-parea))/cm
#ddcam/dt=(dcaminf(vd)-dcam)/camtau
#ddcah/dt=(dcahinf(vd)-dcah)/cahtau
ddcas/dt=(dcasinf(vd)-dcas)/dcastau
ddn/dt=(dninf(vd)-dn)/dntau(vd)
#ddca/dt=-f*alpha*(dicas(vd,dcas)+dicaf(vd,dcam,dcah))-f*kca*dca
ddca/dt=-f*alpha2*(dicas(vd,dcas))-f*kca*dca
#-----------Persistent Sodium-----------------
#dmnap/dt=(minfnap(Vd)-mnap)/taumnap(Vd)
dmnap/dt=(minfnap(Vd)-mnap)/taunap
p taunap=40
#dhnap/dt=(hinfnap(vd)-hnap)/tauhnap(Vd)
dhnap/dt=(hinfnap(vd)-hnap)/naptau
p naptau=1000
#INaP=gNaP*minfnap(Vd)*hnap*(Vd-(vna+vrest))
#INaP=gNaP*mnap*hnap*(Vd-(vna+vrest))
#INaP=gNaP*mnap*(Vd-55)
minfnap(Vd)=1/(1+exp(-(vd-thetamnap)/Kmnap))
hinfnap(vd)=1/(1+exp((vd-thetahnap)/Khnap))
#taunap(Vd)=taumxnap/cosh((vd-thetahnap)/(2*Khnap))
taumnap(Vd)=Tmnap/cosh((vd-thetamnap)/(2*Khnap))
tauhnap(Vd)=taumxnap/cosh((vd-thetahnap)/(2*Khnap))
p thetamnap=-48,Kmnap=3,thetahnap=-35,Khnap=6,taumxnap=10000,Tmnap=5000
#
#---------------RC equations-----------------
dvr/dt=(-gna*minf(vr)^3*h(nr)*(vr-ena)-gk*nr^4*(vr-ek)-gl*(vr-el)+Idr)/cr
dnr/dt=(ninf(vr)-nr)/ntau(nr)
dsr/dt=alphar*(1-sr)*sinf(vr)-betar*sr
sinf(v)=1/(1+exp(-(v-thetas)/ks))
ntau(v)=28./(exp((v+50)/20)+exp(-(v+60)/10))
ninf(v)=1.0/(1+exp((nVh-v)/nk))
minf(v)=1.0/(1+exp((mVh-v)/mk))
h(n) = .7 - 1.1*n
#--------Synaptic Currents------------
Imn=gmn*s*(vr-ve)
p Ipool=0
p Idr=6.2
Ir=gr*sr*(vd-vi)
# ----------RC parameters---------------
p cr=1
p alphamn=2,betamn=0.05
p alphar=1
p betar=0.09
# other values of betar = 0.025, 0.0125
p thetas=-15, ks=.02
#p ggb=0.005,ggl=0.005
p gr=0.01 # Changed on Oct 6th 2009
p gmn=0.15
p ve=50,vi=-80
p rgk=100
p gna=80.0,rnamth=-35.0,rnamslp=7.8,rnahth=-55.0,rnahslp=7.0
par mVh=-40,mk=7,nVh=-45,nk=15
p rgna=70,el=-54,Gk=40
p Ena=50,Ek=-77,eca=80
# soma functions
ins(vs,snah,scam,scah)=-sina(vs,snah)-sica(vs,scam,scah)
outs(vs,sn,sca)=-sikdr(vs,sn)-sikca(vs,sca)
sina(vs,snah)=sgna*snaminf(vs)**3*snah*(vs-(vna+vrest))
sica(vs,scam,scah)=sgca*scam**2*scah*(vs-(vca+vrest))
sikdr(vs,sn)=sgk*sn**4*(vs-(vk+vrest))
sikca(vs,sca)=perkca*sgkca*(sca**p/(kd**p+sca**p))*(vs-(vk+vrest))
snaminf(vs)=1.0/(1.0+exp(-(vs-snamth)/snamslp))
snahinf(vs)=1.0/(1.0+exp((vs-snahth)/snahslp))
snahtau(vs)=snahc/(exp((vs-snahv)/snaha)+exp(-(vs-snahv)/snahb))
sninf(vs)=1.0/(1.0+exp(-(vs-nth)/nslp))
sntau(vs)=nc/(exp((vs-nv)/na)+exp(-(vs-nv)/nb))
scaminf(vs)=1.0/(1.0+exp(-(vs-camth)/camslp))
scahinf(vs)=1.0/(1.0+exp((vs-cahth)/cahslp))
# dendrite functions
ind(vd,dcas)=-dicas(vd,dcas)
outd(vd,dn,dca)=-dikdr(vd,dn)-dikca(vd,dca)
dicaf(vd,dcam,dcah)=dgcaf*dcam**2*dcah*(vd-(vca+vrest))
dicas(vd,dcas)=percap*dgcas*dcas*(vd-(vca+vrest))
dikdr(vd,dn)=dgk*dn**4*(vd-(vk+vrest))
dikca(vd,dca)=perkca*dgkca*(dca**p/(kd**p+dca**p))*(vd-(vk+vrest))
dcaminf(vd)=1.0/(1.0+exp(-(vd-camth)/camslp))
dcahinf(vd)=1.0/(1.0+exp((vd-cahth)/cahslp))
dcasinf(vd)=1.0/(1.0+exp(-(vd-dcasth)/dcasslp))
dninf(vd)=1.0/(1.0+exp(-(vd-nth)/nslp))
dntau(vd)=nc/(exp((vd-nv)/na)+exp(-(vd-nv)/nb))
# applied current - here a parameter iapp
#iapp(t)=i0+heav(poff-t)*heav(t-pon)*ip
#
# bifurcation parameter
p iapp=0
# common parameters
p vna=115.0,vk=-20.0,vl=0.0,vca=140.0,vrest=-60.0,cm=1.0,gl=0.51,
p p=1,kd=0.2,f=0.01,kca=2.0,alpha=0.009
# soma parameters
p sgna=80.0,snamth=-35.0,snamslp=7.8,snahth=-55.0,snahslp=7.0
p snahv=-50.0,snaha=15.0,snahb=16.0,snahc=30.0
p sgk=100.0,nth=-28.0,nslp=12.0,nv=-40.0,na=40.0,nb=50.0,nc=7.0
p sgca=14.0,camth=-30.0,camslp=5.0,camtau=4.0
p cahth=-45.0,cahslp=5.0,cahtau=40.0
#p sgkca=5.0
p sgkca=6
# dendrite parameters
p dgcaf=0.3
p dcasth=-39.0,dcasslp=7.0,dcastau=40.0
p dgk=0.0
# coupling parameters
p gc=0.1,parea=0.1
#p gc=0.08,parea=0.1
# current parameters
p i0=0,ip=10,pon=50,poff=1000
# conductance percentage factors
p perkca=1.0, perslca=1.0
# conductances sensitive to SCI
p dgkca=1.0
p gnap=0.1
p dgcas=0.25
p gpratio=1.772
p alpha2=0.009
p percap=1
p pernap=1
--------
Iramp=offsetr+scaler*(t-tonr)*(heav(t-tonr)*heav(toffr-t))+2*scaler*(tswitchr-t)*(heav(t-tswitchr)*heav(toffr-t))
par offsetr=0
par scaler=0.005
par tonr=0
par toffr=10000
par tswitchr=4000
# Changed on Nov 16 in order to compare the grading of sec. freq by RC inhibition
#Iramp=offsetr+scaler*(t-tonr)*(heav(t-tonr)*heav(toffr-t))
#par offsetr=0
#par scaler=0.0007
#par tonr=0
#par toffr=30000
#par tswitchr=4000
--------
# soma initial conditions
vs(0)=-57.34
snah(0)=0.5829
sn(0)=0.1239
scam(0)=0.004199
scah(0)=0.9219
sca(0)=0.0001406
# dendrite initial conditions
vd(0)=-56.64
#dcam(0)=0.00483
#dcah(0)=0.9112
dcas(0)=0.08493
dn(0)=0.1291
dca(0)=0.01724
#
#aux xiapp=iapp(t)
aux I=Iramp
aux Ipulse=Iapp
aux Ivclamp=(ins(vs,snah,scam,scah)+outs(vs,sn,sca)-gl*(vs-(vl+vrest))+gc*(vd-vs)/parea)/cm
aux Irc=-Ir
aux Ipic=ind(vd,dcas)-pernap*gNaP*mnap*hnap*(Vd-(vna+vrest))
#
#xpp formatting
@ TOTAL=10000,DT=0.05,
@ MAXSTOR=1000000,BOUNDS=600000,method=qualrk
@ xlo=0,xhi=10000,ylo=-60,yhi=40,nplot=2,yp2=vr,nplot=3,yp3=Ipulse
done