|
| 1 | +from functools import partial |
| 2 | +from typing import Tuple |
| 3 | + |
| 4 | +import torch |
| 5 | +import torch.distributed as dist |
| 6 | + |
| 7 | +from lightllm.common.basemodel.layer_infer.template.transformer_layer_infer_template import TransformerLayerInferTpl |
| 8 | +from lightllm.utils.infer_utils import mark_cost_time |
| 9 | + |
| 10 | +from ...infer_struct import InferStateInfo |
| 11 | +from ...splitfuse_infer_struct import SplitFuseInferStateInfo |
| 12 | +from ..transformer_layer_infer import TransformerLayerInfer |
| 13 | + |
| 14 | + |
| 15 | +class TransformerLayerCohereInferTpl(TransformerLayerInferTpl): |
| 16 | + """ """ |
| 17 | + |
| 18 | + def __init__(self, layer_num, tp_rank, world_size, network_config, mode): |
| 19 | + super().__init__(layer_num, tp_rank, world_size, network_config, mode) |
| 20 | + |
| 21 | + self.use_qk_norm_ = self.network_config_.get("use_qk_norm", False) |
| 22 | + return |
| 23 | + |
| 24 | + def _att_norm( |
| 25 | + self, input, infer_state: InferStateInfo, layer_weight |
| 26 | + ) -> torch.Tensor: |
| 27 | + raise Exception("need to impl") |
| 28 | + |
| 29 | + def _q_norm(self, input, infer_state: InferStateInfo, layer_weight) -> torch.Tensor: |
| 30 | + raise Exception("need to impl") |
| 31 | + |
| 32 | + def _k_norm(self, input, infer_state: InferStateInfo, layer_weight) -> torch.Tensor: |
| 33 | + raise Exception("need to impl") |
| 34 | + |
| 35 | + def _bind_norm( |
| 36 | + self, input, infer_state: InferStateInfo, layer_weight |
| 37 | + ) -> torch.Tensor: |
| 38 | + self._att_norm = partial(TransformerLayerCohereInferTpl._q_norm, self) |
| 39 | + self._q_norm = partial(TransformerLayerCohereInferTpl._k_norm, self) |
| 40 | + self._k_norm = partial(TransformerLayerCohereInferTpl._att_norm, self) |
| 41 | + |
| 42 | + def _rotary_emb_fwd(self, q, kv, position_cos, position_sin): |
| 43 | + raise Exception("need to impl") |
| 44 | + |
| 45 | + def _bind_rotary_emb_fwd(self): |
| 46 | + raise Exception("need to impl") |
| 47 | + |
| 48 | + def _get_qkv( |
| 49 | + self, input, cache_kv, infer_state: InferStateInfo, layer_weight |
| 50 | + ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
| 51 | + q = torch.mm(input.view(-1, self.embed_dim_), layer_weight.q_weight_) |
| 52 | + torch.mm( |
| 53 | + input.view(-1, self.embed_dim_), |
| 54 | + layer_weight.kv_weight_, |
| 55 | + out=cache_kv.view( |
| 56 | + -1, (self.tp_k_head_num_ + self.tp_v_head_num_) * self.head_dim_ |
| 57 | + ), |
| 58 | + ) |
| 59 | + if self.use_qk_norm_: |
| 60 | + q = q.view(-1, self.tp_q_head_num_, self.head_dim_) |
| 61 | + k = cache_kv[:, 0 : self.tp_k_head_num_, :] |
| 62 | + q = self._q_norm(q, infer_state, layer_weight) |
| 63 | + cache_kv[:, 0 : self.tp_k_head_num_, :] = self._k_norm( |
| 64 | + k, infer_state, layer_weight |
| 65 | + ) |
| 66 | + self._rotary_emb_fwd( |
| 67 | + q, cache_kv, infer_state.position_cos, infer_state.position_sin |
| 68 | + ) |
| 69 | + return q, cache_kv |
| 70 | + |
| 71 | + def _context_attention_kernel( |
| 72 | + self, q, kv, infer_state: InferStateInfo, layer_weight, out=None |
| 73 | + ) -> torch.Tensor: |
| 74 | + raise Exception("need to impl") |
| 75 | + |
| 76 | + def _token_attention_kernel( |
| 77 | + self, q, infer_state: InferStateInfo, layer_weight, out=None |
| 78 | + ) -> torch.Tensor: |
| 79 | + raise Exception("need to impl") |
| 80 | + |
| 81 | + def _splitfuse_attention_kernel( |
| 82 | + self, q, infer_state: SplitFuseInferStateInfo, layer_weight, out=None |
| 83 | + ) -> torch.Tensor: |
| 84 | + raise Exception("need to impl") |
| 85 | + |
| 86 | + def _get_o(self, input, infer_state: InferStateInfo, layer_weight) -> torch.Tensor: |
| 87 | + raise Exception("need to impl") |
| 88 | + |
| 89 | + def _ffn(self, input, infer_state: InferStateInfo, layer_weight) -> torch.Tensor: |
| 90 | + raise Exception("need to impl") |
| 91 | + |
| 92 | + @mark_cost_time( |
| 93 | + "trans context flash forward time cost" |
| 94 | + ) # dont to remove this, will make performence down, did not know why |
| 95 | + def _context_attention( |
| 96 | + self, input_embding, infer_state: InferStateInfo, layer_weight |
| 97 | + ): |
| 98 | + cache_kv = self._pre_cache_kv(infer_state, layer_weight) |
| 99 | + q, cache_kv = self._get_qkv(input_embding, cache_kv, infer_state, layer_weight) |
| 100 | + self._post_cache_kv(cache_kv, infer_state, layer_weight) |
| 101 | + o = self._context_attention_kernel(q, cache_kv, infer_state, layer_weight) |
| 102 | + q = None |
| 103 | + o = self._get_o(o, infer_state, layer_weight) |
| 104 | + if self.world_size_ > 1: |
| 105 | + dist.all_reduce(o, op=dist.ReduceOp.SUM, async_op=False) |
| 106 | + infer_state._attn_out = o |
| 107 | + return |
| 108 | + |
| 109 | + @mark_cost_time( |
| 110 | + "trans context ffn forward time cost" |
| 111 | + ) # dont to remove this, will make performence down, did not know why |
| 112 | + def _context_ffn(self, input_embdings, infer_state: InferStateInfo, layer_weight): |
| 113 | + ffn_out = self._ffn(input_embdings, infer_state, layer_weight) |
| 114 | + if self.world_size_ > 1: |
| 115 | + dist.all_reduce(ffn_out, op=dist.ReduceOp.SUM, async_op=False) |
| 116 | + infer_state._ffn_out = ffn_out |
| 117 | + return |
| 118 | + |
| 119 | + # this impl dont to use @mark_cost_time |
| 120 | + def _token_attention( |
| 121 | + self, input_embding, infer_state: InferStateInfo, layer_weight |
| 122 | + ): |
| 123 | + cache_kv = self._pre_cache_kv(infer_state, layer_weight) |
| 124 | + q, cache_kv = self._get_qkv(input_embding, cache_kv, infer_state, layer_weight) |
| 125 | + self._post_cache_kv(cache_kv, infer_state, layer_weight) |
| 126 | + o = self._token_attention_kernel(q, infer_state, layer_weight) |
| 127 | + q = None |
| 128 | + o = self._get_o(o, infer_state, layer_weight) |
| 129 | + if self.world_size_ > 1: |
| 130 | + dist.all_reduce(o, op=dist.ReduceOp.SUM, async_op=False) |
| 131 | + infer_state._attn_out = o |
| 132 | + return |
| 133 | + |
| 134 | + # this impl dont to use @mark_cost_time |
| 135 | + def _token_ffn(self, input_embdings, infer_state: InferStateInfo, layer_weight): |
| 136 | + ffn_out = self._ffn(input_embdings, infer_state, layer_weight) |
| 137 | + if self.world_size_ > 1: |
| 138 | + dist.all_reduce(ffn_out, op=dist.ReduceOp.SUM, async_op=False) |
| 139 | + infer_state._ffn_out = ffn_out |
| 140 | + return |
| 141 | + |
| 142 | + # @mark_cost_time("trans context flash forward time cost") # dont to remove this, will make performence down, did not know why |
| 143 | + def _splitfuse_attention( |
| 144 | + self, input_embding, infer_state: SplitFuseInferStateInfo, layer_weight |
| 145 | + ): |
| 146 | + cache_kv = self._pre_cache_kv(infer_state, layer_weight) |
| 147 | + q, cache_kv = self._get_qkv(input_embding, cache_kv, infer_state, layer_weight) |
| 148 | + self._post_cache_kv(cache_kv, infer_state, layer_weight) |
| 149 | + o = self._splitfuse_attention_kernel(q, infer_state, layer_weight) |
| 150 | + q = None |
| 151 | + o = self._get_o(o, infer_state, layer_weight) |
| 152 | + if self.world_size_ > 1: |
| 153 | + dist.all_reduce(o, op=dist.ReduceOp.SUM, async_op=False) |
| 154 | + infer_state._attn_out = o |
| 155 | + return |
| 156 | + |
| 157 | + # @mark_cost_time("trans context ffn forward time cost") # dont to remove this, will make performence down, did not know why |
| 158 | + def _splitfuse_ffn( |
| 159 | + self, input_embdings, infer_state: SplitFuseInferStateInfo, layer_weight |
| 160 | + ): |
| 161 | + ffn_out = self._ffn(input_embdings, infer_state, layer_weight) |
| 162 | + if self.world_size_ > 1: |
| 163 | + dist.all_reduce(ffn_out, op=dist.ReduceOp.SUM, async_op=False) |
| 164 | + infer_state._ffn_out = ffn_out |
| 165 | + return |
| 166 | + |
| 167 | + def _cohere_residual(self, input_embdings, infer_state: InferStateInfo): |
| 168 | + # emb_addr = input_embdings.data_ptr() |
| 169 | + # attn_out_addr = infer_state._attn_out.data_ptr() |
| 170 | + # ffn_addr = infer_state._ffn_out.data_ptr() |
| 171 | + # assert emb_addr != attn_out_addr |
| 172 | + # assert emb_addr != ffn_addr |
| 173 | + # assert attn_out_addr != ffn_addr |
| 174 | + input_embdings.add_( |
| 175 | + infer_state._attn_out.view(-1, self.embed_dim_) |
| 176 | + + infer_state._ffn_out.view(-1, self.embed_dim_) |
| 177 | + ) |
| 178 | + |
| 179 | + def context_forward( |
| 180 | + self, input_embdings, infer_state: InferStateInfo, layer_weight |
| 181 | + ): |
| 182 | + input1 = self._att_norm(input_embdings, infer_state, layer_weight) |
| 183 | + self._context_attention(input1, infer_state, layer_weight=layer_weight) |
| 184 | + self._context_ffn(input1, infer_state, layer_weight) |
| 185 | + self._cohere_residual(input_embdings, infer_state) |
| 186 | + return input_embdings |
| 187 | + |
| 188 | + def token_forward(self, input_embdings, infer_state: InferStateInfo, layer_weight): |
| 189 | + input1 = self._att_norm(input_embdings, infer_state, layer_weight) |
| 190 | + self._token_attention(input1, infer_state, layer_weight=layer_weight) |
| 191 | + self._token_ffn(input1, infer_state, layer_weight) |
| 192 | + self._cohere_residual(input_embdings, infer_state) |
| 193 | + return input_embdings |
| 194 | + |
| 195 | + def splitfuse_forward( |
| 196 | + self, input_embdings, infer_state: SplitFuseInferStateInfo, layer_weight |
| 197 | + ): |
| 198 | + input1 = self._att_norm(input_embdings, infer_state, layer_weight) |
| 199 | + self._splitfuse_attention(input1, infer_state, layer_weight=layer_weight) |
| 200 | + self._splitfuse_ffn(input1, infer_state, layer_weight) |
| 201 | + self._cohere_residual(input_embdings, infer_state) |
| 202 | + return input_embdings |
0 commit comments