|
| 1 | +import torch |
| 2 | + |
| 3 | +import triton |
| 4 | +import triton.language as tl |
| 5 | + |
| 6 | + |
| 7 | +@triton.jit |
| 8 | +def _fwd_kernel_destindex_copy_quantize_int4_kv( |
| 9 | + K, |
| 10 | + Dest_loc, |
| 11 | + Out, |
| 12 | + Out_scale, |
| 13 | + stride_k_bs, |
| 14 | + stride_k_h, |
| 15 | + stride_k_g, |
| 16 | + stride_k_d, |
| 17 | + stride_o_bs, |
| 18 | + stride_o_h, |
| 19 | + stride_o_g, |
| 20 | + stride_o_d, |
| 21 | + stride_os_bs, |
| 22 | + stride_os_h, |
| 23 | + stride_os_g, |
| 24 | + group_size, |
| 25 | + BLOCK_GROUP_NUM: tl.constexpr, |
| 26 | + BLOCK_GROUP_DIM: tl.constexpr, |
| 27 | +): |
| 28 | + cur_index = tl.program_id(0) |
| 29 | + cur_head = tl.program_id(1) |
| 30 | + |
| 31 | + offs_g = tl.arange(0, BLOCK_GROUP_NUM) |
| 32 | + offs_d = tl.arange(0, BLOCK_GROUP_DIM // 2) |
| 33 | + |
| 34 | + dest_index = tl.load(Dest_loc + cur_index) |
| 35 | + |
| 36 | + src_data_0 = tl.load( |
| 37 | + K + cur_index * stride_k_bs + cur_head * stride_k_h + offs_g[:, None] * stride_k_g + offs_d[None, :] * 2, |
| 38 | + mask=offs_g[:, None] < group_size, |
| 39 | + other=0.0, |
| 40 | + ) |
| 41 | + src_data_1 = tl.load( |
| 42 | + K + cur_index * stride_k_bs + cur_head * stride_k_h + offs_g[:, None] * stride_k_g + offs_d[None, :] * 2 + 1, |
| 43 | + mask=offs_g[:, None] < group_size, |
| 44 | + other=0.0, |
| 45 | + ) |
| 46 | + |
| 47 | + abs_data_0 = tl.abs(src_data_0) |
| 48 | + abs_data_1 = tl.abs(src_data_1) |
| 49 | + |
| 50 | + data_scale = (tl.maximum(tl.max(abs_data_0, axis=1), tl.max(abs_data_1, axis=1)) / 7.0).to(tl.float16) |
| 51 | + q_src_data_0 = (src_data_0 / data_scale[:, None]).to(tl.int8) |
| 52 | + q_src_data_0 = tl.where(q_src_data_0 > 7, 7, q_src_data_0) |
| 53 | + q_src_data_0 = tl.where(q_src_data_0 < -7, -7, q_src_data_0) |
| 54 | + |
| 55 | + q_src_data_1 = (src_data_1 / data_scale[:, None]).to(tl.int8) |
| 56 | + q_src_data_1 = tl.where(q_src_data_1 > 7, 7, q_src_data_1) |
| 57 | + q_src_data_1 = tl.where(q_src_data_1 < -7, -7, q_src_data_1) |
| 58 | + |
| 59 | + low_4 = ((q_src_data_0 & 0x80) >> 4) | (q_src_data_0 & 0xF) |
| 60 | + high_4 = (((q_src_data_1 & 0x80) >> 4) | (q_src_data_1 & 0xF)) << 4 |
| 61 | + |
| 62 | + # tl.device_print(low_4) |
| 63 | + # tl.device_print(high_4) |
| 64 | + |
| 65 | + out_data = low_4 | high_4 |
| 66 | + |
| 67 | + o_ptrs = Out + dest_index * stride_o_bs + cur_head * stride_o_h + offs_g[:, None] * stride_o_g + offs_d[None, :] |
| 68 | + os_ptrs = Out_scale + dest_index * stride_os_bs + cur_head * stride_os_h + offs_g |
| 69 | + tl.store(o_ptrs, out_data, mask=offs_g[:, None] < group_size) |
| 70 | + tl.store(os_ptrs, data_scale, mask=offs_g < group_size) |
| 71 | + return |
| 72 | + |
| 73 | + |
| 74 | +@torch.no_grad() |
| 75 | +def destindex_copy_int4kv(K, DestLoc, Out, Out_scale): |
| 76 | + seq_len = DestLoc.shape[0] |
| 77 | + head_num = K.shape[1] |
| 78 | + head_dim = K.shape[2] |
| 79 | + quant_group_dim = 8 |
| 80 | + |
| 81 | + assert head_dim % quant_group_dim == 0, "error head dim, can not been supported to copy quant kv" |
| 82 | + grid = (seq_len, head_num) |
| 83 | + num_warps = 1 |
| 84 | + |
| 85 | + group_size = head_dim // quant_group_dim |
| 86 | + group_dim = quant_group_dim |
| 87 | + |
| 88 | + K = K.view((K.shape[0], K.shape[1], group_size, group_dim)) |
| 89 | + Out = Out.view( |
| 90 | + Out.shape[0], Out.shape[1], group_size, group_dim // 2 |
| 91 | + ) # OUt 是 int8 类型, 两个int4组一个int8,所以 group_dim // 2 |
| 92 | + |
| 93 | + _fwd_kernel_destindex_copy_quantize_int4_kv[grid]( |
| 94 | + K, |
| 95 | + DestLoc, |
| 96 | + Out, |
| 97 | + Out_scale, |
| 98 | + K.stride(0), |
| 99 | + K.stride(1), |
| 100 | + K.stride(2), |
| 101 | + K.stride(3), |
| 102 | + Out.stride(0), |
| 103 | + Out.stride(1), |
| 104 | + Out.stride(2), |
| 105 | + Out.stride(3), |
| 106 | + Out_scale.stride(0), |
| 107 | + Out_scale.stride(1), |
| 108 | + Out_scale.stride(2), |
| 109 | + group_size, |
| 110 | + BLOCK_GROUP_NUM=triton.next_power_of_2(group_size), |
| 111 | + BLOCK_GROUP_DIM=group_dim, |
| 112 | + num_warps=num_warps, |
| 113 | + num_stages=1, |
| 114 | + ) |
| 115 | + return |
| 116 | + |
| 117 | + |
| 118 | +def test2(): |
| 119 | + import time |
| 120 | + |
| 121 | + src = torch.randn((1, 1, 16), dtype=torch.float16).cuda() |
| 122 | + src[0, 0, :] = torch.tensor([-2, 1, 2, 0, 4, 5, 6, 7, -2, 1, 2, 0, 4, 5, 6, 7]).cuda() |
| 123 | + dest_loc = torch.arange(0, 1, dtype=torch.int32).cuda() |
| 124 | + value_dest = torch.randn((1, 1, 8), dtype=torch.float16).cuda().to(torch.int8) |
| 125 | + scale_dest = torch.randn((1, 1, 2), dtype=torch.float16).cuda() |
| 126 | + |
| 127 | + destindex_copy_int4kv(src, dest_loc, value_dest, scale_dest) |
| 128 | + |
| 129 | + print(value_dest) |
| 130 | + print(scale_dest) |
| 131 | + |
| 132 | + |
| 133 | +if __name__ == "__main__": |
| 134 | + test2() |
0 commit comments