|
| 1 | +from lightllm.models.internlm_wquant.layer_weights.transformer_layer_weight import InternlmTransformerLayerWeightQuantized |
| 2 | + |
| 3 | + |
| 4 | +class Internlm2TransformerLayerWeightQuantized(InternlmTransformerLayerWeightQuantized): |
| 5 | + def __init__(self, layer_num, tp_rank, world_size, data_type, network_config, mode=[]): |
| 6 | + super().__init__(layer_num, tp_rank, world_size, data_type, network_config, mode) |
| 7 | + return |
| 8 | + |
| 9 | + def _load_qkvo_weights(self, weights): |
| 10 | + # input layernorm params |
| 11 | + if f"model.layers.{self.layer_num_}.attention_norm.weight" in weights: |
| 12 | + self.att_norm_weight_ = self._cuda(weights[f"model.layers.{self.layer_num_}.attention_norm.weight"]) |
| 13 | + |
| 14 | + n_embed = self.network_config_["hidden_size"] |
| 15 | + q_split_n_embed = n_embed // self.world_size_ |
| 16 | + kv_split_n_embed = ( |
| 17 | + n_embed |
| 18 | + // self.network_config_["num_attention_heads"] |
| 19 | + * self.network_config_["num_key_value_heads"] |
| 20 | + // self.world_size_ |
| 21 | + ) |
| 22 | + head_dim = n_embed // self.network_config_["num_attention_heads"] |
| 23 | + # q k v weights for llama |
| 24 | + if f"model.layers.{self.layer_num_}.attention.wqkv.weight" in weights: |
| 25 | + qkv_weight_ = weights[f"model.layers.{self.layer_num_}.attention.wqkv.weight"] |
| 26 | + q_groups = self.network_config_["num_attention_heads"] // self.network_config_["num_key_value_heads"] |
| 27 | + qkv_weight_ = qkv_weight_.reshape(self.network_config_["num_key_value_heads"], q_groups + 2, head_dim, -1) |
| 28 | + q_weight_ = qkv_weight_[:, :q_groups, :, :].reshape(-1, qkv_weight_.shape[-1]) |
| 29 | + q_weight_ = q_weight_[q_split_n_embed * self.tp_rank_ : q_split_n_embed * (self.tp_rank_ + 1) :].transpose(0, 1) |
| 30 | + self.q_weight_ = self.quantize_weight(q_weight_) |
| 31 | + |
| 32 | + k_weight_ = qkv_weight_[:, -2, :, :].reshape(-1, qkv_weight_.shape[-1]) |
| 33 | + self.k_weight_ = k_weight_[ |
| 34 | + kv_split_n_embed * self.tp_rank_ : kv_split_n_embed * (self.tp_rank_ + 1) : |
| 35 | + ].transpose(0, 1) |
| 36 | + v_weight_ = qkv_weight_[:, -1, :, :].reshape(-1, qkv_weight_.shape[-1]) |
| 37 | + self.v_weight_ = v_weight_[ |
| 38 | + kv_split_n_embed * self.tp_rank_ : kv_split_n_embed * (self.tp_rank_ + 1) : |
| 39 | + ].transpose(0, 1) |
| 40 | + |
| 41 | + self._try_cat_to(["k_weight_", "v_weight_"], "kv_weight_", cat_dim=1, handle_func=self.quantize_weight) |
| 42 | + |
| 43 | + # attention output dense params |
| 44 | + if f"model.layers.{self.layer_num_}.attention.wo.weight" in weights: |
| 45 | + self.o_weight_ = weights[f"model.layers.{self.layer_num_}.attention.wo.weight"] |
| 46 | + self.o_weight_ = self.o_weight_[:, q_split_n_embed * self.tp_rank_ : q_split_n_embed * (self.tp_rank_ + 1)] |
| 47 | + self.o_weight_ = self.quantize_weight(self.o_weight_.transpose(0, 1)) |
| 48 | + if f"model.layers.{self.layer_num_}.attention.wo.bias" in weights: |
| 49 | + self.o_bias_ = weights[f"model.layers.{self.layer_num_}.attention.wo.bias"] |
| 50 | + self.o_bias_ = self._cuda(self.o_bias_) |
| 51 | + return |
| 52 | + |
| 53 | + def _load_ffn_weights(self, weights): |
| 54 | + if f"model.layers.{self.layer_num_}.ffn_norm.weight" in weights: |
| 55 | + self.ffn_norm_weight_ = self._cuda(weights[f"model.layers.{self.layer_num_}.ffn_norm.weight"]) |
| 56 | + |
| 57 | + inter_size = self.network_config_["intermediate_size"] |
| 58 | + split_inter_size = inter_size // self.world_size_ |
| 59 | + |
| 60 | + if f"model.layers.{self.layer_num_}.feed_forward.w3.weight" in weights: |
| 61 | + up_proj = weights[f"model.layers.{self.layer_num_}.feed_forward.w3.weight"][ |
| 62 | + split_inter_size * self.tp_rank_ : split_inter_size * (self.tp_rank_ + 1), : |
| 63 | + ] |
| 64 | + self.up_proj = up_proj.transpose(0, 1) |
| 65 | + |
| 66 | + if f"model.layers.{self.layer_num_}.feed_forward.w1.weight" in weights: |
| 67 | + gate_proj = weights[f"model.layers.{self.layer_num_}.feed_forward.w1.weight"][ |
| 68 | + split_inter_size * self.tp_rank_ : split_inter_size * (self.tp_rank_ + 1), : |
| 69 | + ] |
| 70 | + self.gate_proj = gate_proj.transpose(0, 1) |
| 71 | + |
| 72 | + self._try_cat_to(["gate_proj", "up_proj"], "gate_up_proj", cat_dim=1, handle_func=self.quantize_weight) |
| 73 | + |
| 74 | + if f"model.layers.{self.layer_num_}.feed_forward.w2.weight" in weights: |
| 75 | + self.down_proj = weights[f"model.layers.{self.layer_num_}.feed_forward.w2.weight"][ |
| 76 | + :, split_inter_size * self.tp_rank_ : split_inter_size * (self.tp_rank_ + 1) |
| 77 | + ] |
| 78 | + self.down_proj = self.quantize_weight(self.down_proj.transpose(0, 1)) |
| 79 | + return |
0 commit comments