diff --git a/LICENSE b/LICENSE new file mode 100644 index 0000000..3bc2f52 --- /dev/null +++ b/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2020 Ignacio Morales-Castilla + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/R_code/1_Script_run_explore_model.R b/R_code/1_Script_run_explore_model.R new file mode 100644 index 0000000..db62712 --- /dev/null +++ b/R_code/1_Script_run_explore_model.R @@ -0,0 +1,272 @@ +#'############################################################# +#' Phylogenetic estimates of species-level phenology improve ecological forecasting +#' +#' * Script #1 Phylogenetic Mixed Model fitting +#' +#' +#' by Morales-Castilla, I., et al. +#' feb 2024 +#'############################################################# + + +## Runs (or reads) the phylogeny models, extracts some output +## Does some basic plotting + +rm(list=ls()) +options(stringsAsFactors = FALSE) + +# Setting working directory. Add in your own path in an if statement for your file structure +setwd("~/your/local/address/") + + +# Loading packages +library(caper) +library(pez) +library(phytools) +library(rstan) +library(shinystan) +library(plyr) +library(dplyr) + +options(mc.cores = parallel::detectCores()) + + + +#'###################################### +#### load data and phylogeny #### +#'###################################### + + + d = read.csv("data/ospreebbphyloms_forknb.csv") + phylo = read.tree("data/phyloforphyloms.tre") + + + + + +#'################################### +# Run the models #### +#'################################### + +## Fit model here + fitlambest <- stan("stan_code/PhenoPhyloMM_PMM.stan", + data=list(N=nrow(d), + n_sp=nspecies, + sp=d$sppnum, + x1=d$force.z, + x2 = d$chill.z, + x3=d$photo.z, + y=d$resp, + Vphy=vcv(phylo, corr = TRUE)), + iter = 4000, + warmup = 2000, # half the iter as warmp is default, but leaving in case we want to change + chains = 4, + seed = 117 + ) + + ## Save fitted posterior + saveRDS(fitlambest, "output/fit_model_PMM.rds") + + fitlamb0 <- stan("stan/PhenoPhyloMM_HMM.stan", + data=list(N=nrow(d), + n_sp=nspecies, + sp=d$sppnum, + x1=d$force.z, + x2 = d$chill.z, + x3=d$photo.z, + y=d$resp, + Vphy=vcv(phylo, corr = TRUE)), + iter = 4000, + warmup = 2000, + chains = 4, + seed = 117 + ) + saveRDS(fitlamb0, "output/fit_model_HMM.rds") + + + +#'################################### +# Explore model fit #### +#'################################### + +## Summarize full fit +# summary(fit)$summary + +## Summarize lambdas, b_zf, b_zc, , b_zp, intercept mean, and sigmas +fitsum <- summary(fitlambest, pars = list("a_z", "sigma_interceptsa", + "b_zf", "sigma_interceptsbf", "lam_interceptsbf", + "b_zc", "sigma_interceptsbc", "lam_interceptsbc", + "b_zp", "sigma_interceptsbp", "lam_interceptsbp","sigma_y"))$summary + +fitsumdf <- as.data.frame(fitsum) + +source("source/stan_utility.R") +check_all_diagnostics(fitlambest) + + + + + +#'############################################### +#### comparing estimates lambda est vs 1 vs 0 #### +#'############################################### + + +## load models + + + +## Summarize lambdas, b_zf, b_zc, , b_zp, intercept mean, and sigmas +tableresults.0 = summary(fitlam0, pars = list("a_z", "sigma_interceptsa", "b_zf", "sigma_interceptsbf", "b_zc", "sigma_interceptsbc", "b_zp", "sigma_interceptsbp", "sigma_y"))$summary +tableresults.est = summary(fitlambest, pars = list("a_z", "lam_interceptsa", "sigma_interceptsa", "b_zf", "lam_interceptsbf", "sigma_interceptsbf", "b_zc", "lam_interceptsbc", "sigma_interceptsbc", "b_zp", "lam_interceptsbp", "sigma_interceptsbp", "sigma_y"))$summary + + + +## rename model to include species names +names(fitlambest)[grep(pattern = "^a\\[", x = names(fitlambest))] <- phylo$tip.label +names(fitlambest)[grep(pattern = "^b_force", x = names(fitlambest))] <- phylo$tip.label +names(fitlambest)[grep(pattern = "^b_chill", x = names(fitlambest))] <- phylo$tip.label +names(fitlambest)[grep(pattern = "^b_photo", x = names(fitlambest))] <- phylo$tip.label + +names(fitlam0)[grep(pattern = "^a\\[", x = names(fitlam0))] <- phylo$tip.label +names(fitlam0)[grep(pattern = "^b_force", x = names(fitlam0))] <- phylo$tip.label +names(fitlam0)[grep(pattern = "^b_chill", x = names(fitlam0))] <- phylo$tip.label +names(fitlam0)[grep(pattern = "^b_photo", x = names(fitlam0))] <- phylo$tip.label + + + + +# get model estimates per species ---- + +## where species are + +posspsindata.est <- list(10:200,202:392,394:584) +posspsindata.01 <- list(6:196,198:388,390:580) + + +## forcing +cueforce = summary(fitlambest)$summary[posspsindata.est[[1]],"mean"] +cueforcesdup = summary(fitlambest)$summary[posspsindata.est[[1]],"75%"] +cueforcesdlow = summary(fitlambest)$summary[posspsindata.est[[1]],"25%"] + +cueforce0 = summary(fitlam0)$summary[posspsindata.01[[1]],"mean"] +cueforcesdup0 = summary(fitlam0)$summary[posspsindata.01[[1]],"75%"] +cueforcesdlow0 = summary(fitlam0)$summary[posspsindata.01[[1]],"25%"] + + +## chill +cuechill = summary(fitlambest)$summary[posspsindata.est[[2]],"mean"] +cuechillsdup = summary(fitlambest)$summary[posspsindata.est[[2]],"75%"] +cuechillsdlow = summary(fitlambest)$summary[posspsindata.est[[2]],"25%"] + +cuechill0 = summary(fitlam0)$summary[posspsindata.01[[2]],"mean"] +cuechillsdup0 = summary(fitlam0)$summary[posspsindata.01[[2]],"75%"] +cuechillsdlow0 = summary(fitlam0)$summary[posspsindata.01[[2]],"25%"] + + +## photo +cuephoto = summary(fitlambest)$summary[posspsindata.est[[3]],"mean"] +cuephotosdup = summary(fitlambest)$summary[posspsindata.est[[3]],"75%"] +cuephotosdlow = summary(fitlambest)$summary[posspsindata.est[[3]],"25%"] + +cuephoto0 = summary(fitlam0)$summary[posspsindata.01[[3]],"mean"] +cuephotosdup0 = summary(fitlam0)$summary[posspsindata.01[[3]],"75%"] +cuephotosdlow0 = summary(fitlam0)$summary[posspsindata.01[[3]],"25%"] + + + + + +### plot correlations angio ---- +plotting = F +lambdazero = F + +if(plotting){ + + dev.off() + par(mfrow=c(1,3)) + + virid <- colorRampPalette(c("yellow","darkcyan","purple")) + + colschill <- virid(30)[as.numeric(cut(c(cuechill0, cuechill),breaks = 30))] + colschillhmm <- colschill[1:length(cuechill0)] + colschillpmm <- colschill[(length(cuechill0)+1):length(colschill)] + + + plot(cuechill0, cuechill, + xlab="sensitivity to chilling HMM", + ylab="sensitivity to chilling PMM", + pch=16, col=adjustcolor(colschillpmm,0.4),cex=1.2, cex.lab=1.5, + xlim=c(-30,5),ylim=c(-30,5)) + abline(v=mean(cuechill0), col='grey', lty=2, lwd=2) + + for(i in 1:length(cueforce0)){ + lines(c(cuechillsdlow0[i],cuechillsdup0[i]), + rep(cuechill[i],2), col=adjustcolor(colschillpmm[i],0.2)) + lines(rep(cuechill0[i],2), + c(cuechillsdlow[i],cuechillsdup[i]), + col=adjustcolor(colschillhmm[i],0.2)) + } + points(cuechill0, cuechill,pch=16, col=adjustcolor(colschillpmm,0.4),cex=1.2) + + abline(a=0,b=1, col='darkgrey', lty=2, lwd=1.5) + #abline(lm(cuechill~cuechill0), lwd=1.5) + mtext("a", side = 3, adj = 0.05,line=-2,cex=1.5) + + + colsforce <- virid(30)[as.numeric(cut(c(cueforce0, cueforce),breaks = 30))] + colsforcehmm <- colsforce[1:length(cueforce0)] + colsforcepmm <- colsforce[(length(cueforce0)+1):length(colsforce)] + + plot(cueforce0, cueforce, + xlab="sensitivity to forcing HMM", + ylab="sensitivity to forcing PMM", + pch=16, col=adjustcolor(colsforcepmm,0.4),cex=1.2, cex.lab=1.5, + xlim=c(-20,5),ylim=c(-20,5)) + abline(v=mean(cueforce0), col='grey', lty=2, lwd=2) + + for(i in 1:length(cueforce0)){ + lines(c(cueforcesdlow0[i],cueforcesdup0[i]), + rep(cueforce[i],2), col=adjustcolor(colsforcepmm[i],0.2)) + lines(rep(cueforce0[i],2), + c(cueforcesdlow[i],cueforcesdup[i]), + col=adjustcolor(colsforcehmm[i],0.2)) + + } + points(cueforce0, cueforce,pch=16, col=adjustcolor(colsforcepmm,0.4),cex=1.2) + + abline(a=0,b=1, col='darkgrey', lty=2, lwd=1.5) + #abline(lm(cueforce~cueforce0), lwd=1.5) + mtext("b", side = 3, adj = 0.05,line=-2,cex=1.5) + + colsphoto <- virid(30)[as.numeric(cut(c(cuephoto0, cuephoto),breaks = 30))] + colsphotohmm <- colsphoto[1:length(cuephoto0)] + colsphotopmm <- colsphoto[(length(cuephoto0)+1):length(colsphoto)] + + plot(cuephoto0, cuephoto, + xlab="sensitivity to photoperiod HMM", + ylab="sensitivity to photoperiod PMM", + pch=16, col=adjustcolor(colsphotohmm,0.4),cex=1.2, cex.lab=1.5, + xlim=c(-10,3),ylim=c(-10,3)) + abline(v=mean(cuephoto0), col='grey', lty=2, lwd=2) + + for(i in 1:length(cuephoto0)){ + lines(c(cuephotosdlow0[i],cuephotosdup0[i]), + rep(cuephoto[i],2), col=adjustcolor(colsphotohmm[i],0.2)) + + lines(rep(cuephoto0[i],2), + c(cuephotosdlow[i],cuephotosdup[i]), + col=adjustcolor(colsphotohmm[i],0.2)) + } + points(cuephoto0, cuephoto,pch=16, col=adjustcolor(colsphotopmm,0.4),cex=1.2) + + abline(a=0,b=1, col='darkgrey', lty=2, lwd=1.5) + #abline(lm(cuephoto~cuephoto0), lwd=1.5) + mtext("c", side = 3, adj = 0.05,line=-2,cex=1.5) + + +} + + + +# end ----