-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
169 lines (141 loc) · 7.05 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import argparse
from datetime import datetime
import subprocess
from os import environ
import tensorflow as tf
from enum import Enum
from ml_models.inceptionV3 import InceptionV3
from utils.slack_notifier.slack_notifier import SlackNotifier
from utils.slack_notifier.message.simple_slack_message import SimpleMessage
from utils.slack_notifier.message.result_slack_message import ResultMessage
from utils.statistics.statistics_utils import StatisticsUtils
from utils.slack_notifier.message.color import Color
from utils.statistics.statistic_metrics.statistic_metrics import Metric
from utils.deserializer.protobuf_deserializer import ProtoLoader
from utils.preproccessing.preprocessor import Preprocessor
from utils.result_terminator.result_terminator import ResultTerminator
DEFAULT_PATH = '/net/archive/groups/plggpchdyplo/dataset2/output'
TRAIN_DIR = '/train'
VAL_DIR = '/val'
class DatasetType(Enum):
IMAGES = 0
BINARY = 1
class Job:
def __init__(self, dataset_path, dataset_type):
self.is_notify = environ.get("NOTIFY")
self.commit_hash = subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD']).decode().strip()
self.commit_msg = subprocess.check_output(['git', 'log', '-1', '--pretty=%B']).decode().strip()
self.reporter = subprocess.check_output(['whoami']).decode().strip()
self.start_time = datetime.now()
self.notifier = SlackNotifier()
if dataset_type == DatasetType.BINARY.value:
proto_loader = ProtoLoader(dataset_path)
user_dataset = proto_loader.get_list_of_sequences()
preprocessor = Preprocessor(user_dataset)
training, validation = preprocessor.get_datasets()
self.training = tf.data.Dataset.from_tensor_slices(training).batch(128)
self.validation = tf.data.Dataset.from_tensor_slices(validation).batch(128)
elif dataset_type == DatasetType.IMAGES.value:
self.training, self.validation = self.load_datasets(dataset_path)
self.statistics = None
@staticmethod
def load_datasets(dataset_path):
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
dataset_path + TRAIN_DIR,
seed=123,
image_size=(299, 299),
batch_size=128)
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
dataset_path + VAL_DIR,
seed=123,
image_size=(299, 299),
batch_size=128)
return train_ds, val_ds
def __notify_start_job(self):
if self.is_notify is not None:
slack_simple = SimpleMessage()
slack_simple_msg = slack_simple.new_builder() \
.with_color(Color.BLUE) \
.with_reporter(f"{self.reporter}") \
.with_commit_hash(f"#{self.commit_hash}") \
.with_job_time(self.start_time) \
.with_header("RUNNING JOB") \
.with_info_message(f"{self.commit_msg}") \
.with_summary(f"Running job: {self.commit_msg}") \
.build()
self.notifier.notify(slack_simple_msg)
def __notify_done_job(self, job_time, acc, loss):
if self.is_notify is not None:
slack_results = ResultMessage()
slack_result_msg = slack_results.new_builder() \
.with_color(Color.GREEN) \
.with_job_time(f"{job_time}") \
.with_commit_hash(f"#{self.commit_hash}") \
.with_reporter(f"{self.reporter}") \
.with_accuracy(f"{acc}%") \
.with_loss(f"{loss}%") \
.with_accuracy_chart(f"{self.statistics.create_model_accuracy_training_plot()}") \
.with_loss_chart(f"{self.statistics.create_model_loss_training_plot()}") \
.with_percentile_chart(f"{self.statistics.create_model_accuracy_percentile_histogram()}") \
.with_summary(f"Completed job #{self.commit_hash}") \
.with_false_acceptance_rate(f"{self.statistics.get_mean_false_acceptance_rate()}%") \
.with_false_negatives(f"{self.statistics.get_mean_false_negatives()}") \
.with_false_positives(f"{self.statistics.get_mean_false_positives()}") \
.with_false_rejection_rate(f"{self.statistics.get_mean_false_rejection_rate()}%") \
.with_true_negatives(f"{self.statistics.get_mean_true_negatives()}") \
.with_true_positives(f"{self.statistics.get_mean_true_positives()}") \
.build()
self.notifier.notify(slack_result_msg)
def __notify_crash_job(self, exception):
if self.is_notify is not None:
crashed_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
slack_simple = SimpleMessage()
slack_err_msg = slack_simple.new_builder() \
.with_color(Color.RED) \
.with_reporter(f"{self.reporter}") \
.with_commit_hash(f"#{self.commit_hash}") \
.with_job_time(crashed_time) \
.with_header("CRASHED JOB") \
.with_info_message(f"Job crashed: {exception}") \
.build()
self.notifier.notify(slack_err_msg)
else:
raise exception
def __compute_statistics(self, result):
self.statistics = StatisticsUtils(result)
acc = self.statistics.get_mean_accuracy()
loss = self.statistics.get_mean_loss()
return acc, loss
def __terminate(self, acc, loss):
results_dict = {"commit_hash": self.commit_hash,
Metric.ACC.value: acc,
Metric.LOSS.value: loss}
ResultTerminator(["commit_hash", Metric.ACC.value, Metric.LOSS.value]).terminate(results_dict)
def run(self, model_execution_count):
self.__notify_start_job()
try:
result = []
mirrored_strategy = tf.distribute.MirroredStrategy()
for i in range(model_execution_count):
with mirrored_strategy.scope():
model = InceptionV3(self.training, self.validation)
result.append(model.run())
job_time = self.__compute_job_time()
acc, loss = self.__compute_statistics(result)
self.__notify_done_job(job_time, acc, loss)
self.__terminate(acc, loss)
except Exception as e:
self.__notify_crash_job(e)
def __compute_job_time(self):
return datetime.now() - self.start_time
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run ML model')
parser.add_argument('-d', required=False, type=str, help=f'directory to dataset (default {DEFAULT_PATH})', default=DEFAULT_PATH)
parser.add_argument('-t', required=False, type=int, help='model execution count (default 1)', default=1)
parser.add_argument('--type', required=False, type=int, help='0 for images, 1 for binary dataset (default 0)', default=0)
args = parser.parse_args()
directory = args.d
count = args.t
dataset_type = args.type
job = Job(directory, dataset_type)
job.run(count)