-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
119 lines (94 loc) · 3.89 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
#from langchain.embeddings import OpenAIEmbeddings
import torch
from langchain_community.embeddings import HuggingFaceInstructEmbeddings
from InstructorEmbedding import INSTRUCTOR
from langchain_community.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI # type: ignore
from htmltemplates import css, bot_template, user_template
#from langchain_community.llms import HuggingFaceHub
#function Prototypes
# Function to get texts in Uploaded PDF files.
def get_pdf_text(pdf_docs):
text =""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
# Function to split text into chunks.
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = 5000,
chunk_overlap = 500,
length_function = len
)
chunks = text_splitter.split_text(text)
return chunks
# Function to create vector stores for embedded text chunks
def get_vector_store(text_chunks):
#embeddings = OpenAIEmbeddings()
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-large")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
# Function to create a conversation change
def get_conversation_chain(vectorstore):
#llm = ChatOpenAI()
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.5, "max_length":512})
memory = ConversationBufferMemory(memory_keys = 'chat_history', return_message=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm = llm,
retriever = vectorstore.as_retriever(),
memory = memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
# main - Code entry point
def main():
load_dotenv()
# Create Graphical User Interface.
# Set Page Configs.
st.set_page_config(page_title="ASIRI AI", page_icon=":sparkles:")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Welcome To ASIRI AI :sparkles:")
st.markdown("***")
st.subheader("How Can I Help you Today?")
st.text("")
user_question = st.text_input("Ask a question :")
if user_question:
handle_userinput(user_question)
# Create a Side Bar
with st.sidebar:
st.subheader("Your Documents")
pdf_docs = st.file_uploader("Upload your PDF files here", accept_multiple_files=True )
if st.button("Run"):
with st.spinner("Processing..."):
# Get PDF Document text
raw_text = get_pdf_text(pdf_docs)
# Get splitted text chunks
text_chunks = get_text_chunks(raw_text)
# Creating Vector Store for text chunks
vector_store = get_vector_store(text_chunks)
# Creating a conversation chain
st.session_state.conversation = get_conversation_chain(vector_store)
if __name__ == "__main__":
main()