-
Notifications
You must be signed in to change notification settings - Fork 0
/
questions.py
219 lines (174 loc) · 6.6 KB
/
questions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import nltk
import sys
import os
import string
import math
#nltk.download('punkt')
#nltk.download('stopwords')
FILE_MATCHES = 1
SENTENCE_MATCHES = 10
def main():
# Check command-line arguments
if len(sys.argv) != 2:
sys.exit("Usage: python questions.py corpus")
# Calculate IDF values across files
files = load_files(sys.argv[1])
file_words = {
filename: tokenize(files[filename])
for filename in files
}
file_idfs = compute_idfs(file_words)
# Prompt user for query
query = set(tokenize(input("Query: ")))
# Determine top file matches according to TF-IDF
filenames = top_files(query, file_words, file_idfs, n=FILE_MATCHES)
# Extract sentences from top files
sentences = dict()
for filename in filenames:
for passage in files[filename].split("\n"):
for sentence in nltk.sent_tokenize(passage):
tokens = tokenize(sentence)
if tokens:
sentences[sentence] = tokens
# Compute IDF values across sentences
idfs = compute_idfs(sentences)
# Determine top sentence matches
matches = top_sentences(query, sentences, idfs, n=SENTENCE_MATCHES)
for match in matches:
print(match)
def get_file_content(file):
"""
Read the content of the file
"""
content = ""
with open(file, encoding="utf8") as f:
content = f.read()
return content
def load_files(directory):
"""
Given a directory name, return a dictionary mapping the filename of each
`.txt` file inside that directory to the file's contents as a string.
"""
result={}
# loop through each file in directory
for filename in os.listdir(directory):
result[filename] = get_file_content(os.path.join(directory,filename))
return result
def tokenize(document):
"""
Given a document (represented as a string), return a list of all of the
words in that document, in order.
Process document by coverting all words to lowercase, and removing any
punctuation or English stopwords.
"""
result=[]
tokens = nltk.word_tokenize(document)
stop_words = set(nltk.corpus.stopwords.words('english'))
def remove_punctuation(s):
for c in string.punctuation:
s=s.replace(c,"")
return s
# loop through each token in tokens
for token in tokens:
# turn token into lower case and remove punctuation
word = remove_punctuation(token.lower())
# in word is non blank and is not in stop words list then add to result
if len(word) > 0 and word not in stop_words:
result.append(word)
return result
def compute_idfs(documents):
"""
Given a dictionary of `documents` that maps names of documents to a list
of words, return a dictionary that maps words to their IDF values.
Any word that appears in at least one of the documents should be in the
resulting dictionary.
"""
result = {}
total_no_of_documents = len(documents)
# loop through all word lists
for words_list in documents.values():
# for each word in word list
for word in words_list:
# check if the word already exists in results
# i.e its idf is already calculated before
# if yes skip
if word not in result:
no_documents_word_contain = 0
word_idf = 0
# find occurrance of the word in each document
for values in documents.values():
if word in values:
no_documents_word_contain += 1
# calculate the idf value of word
word_idf = math.log(total_no_of_documents/no_documents_word_contain)
# add to result
result[word] = word_idf
return result
def top_files(query, files, idfs, n):
"""
Given a `query` (a set of words), `files` (a dictionary mapping names of
files to a list of their words), and `idfs` (a dictionary mapping words
to their IDF values), return a list of the filenames of the the `n` top
files that match the query, ranked according to tf-idf.
"""
document_score = {}
# loop thru each file
for document, word_list in files.items():
score = 0
# for each word in query
for query_word in query:
# if the query word exists in the document word list
if query_word in word_list:
# term frequency
tf = word_list.count(query_word)
# inverse document frequency
idf = idfs[query_word]
# td-idf value calculation
tf_idf = tf * idf
# add to score of document
score += tf_idf
# record the document score
document_score[document] = score
result = []
counter = 0
# sort the documents by best score
for document, score in sorted(document_score.items(), key=lambda item: item[1], reverse=True):
if counter < n:
result.append(document)
counter += 1
return result
def top_sentences(query, sentences, idfs, n):
"""
Given a `query` (a set of words), `sentences` (a dictionary mapping
sentences to a list of their words), and `idfs` (a dictionary mapping words
to their IDF values), return a list of the `n` top sentences that match
the query, ranked according to idf. If there are ties, preference should
be given to sentences that have a higher query term density.
"""
sentence_score = {}
for sentence, sentence_words in sentences.items():
score = 0
# number of words in query that matches with sentence words
matching_words = 0
words_in_sentence = len(sentence_words)
# for each word in query
for query_word in query:
# if the query word exists in sentence's words
if query_word in sentence_words:
# calculating matching word measure
score += idfs[query_word]
matching_words += 1
# calculate sentence's query term density measure
qtd = matching_words / words_in_sentence
# record sentence's score as Tuple of (matching word measure, query term density)
sentence_score[sentence] = (score, qtd)
result=[]
counter = 0
# sort the sentences by best score
for sentence, score in sorted(sentence_score.items(), key=lambda item: item[1], reverse=True):
if counter < n:
result.append(sentence)
counter += 1
return result
if __name__ == "__main__":
main()