-
Notifications
You must be signed in to change notification settings - Fork 0
/
traffic.py
107 lines (81 loc) · 3.4 KB
/
traffic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import cv2
import numpy as np
import os
import sys
import tensorflow as tf
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D, Input
EPOCHS = 10
IMG_WIDTH = 30
IMG_HEIGHT = 30
NUM_CATEGORIES = 43
TEST_SIZE = 0.4
def main():
# Check command-line arguments
if len(sys.argv) not in [2, 3]:
sys.exit("Usage: python traffic.py data_directory [model.h5]")
# Get image arrays and labels for all image files
images, labels = load_data(sys.argv[1])
# Split data into training and testing sets
labels = tf.keras.utils.to_categorical(labels)
x_train, x_test, y_train, y_test = train_test_split(
np.array(images), np.array(labels), test_size=TEST_SIZE
)
# Get a compiled neural network
model = get_model()
# Fit model on training data
model.fit(x_train, y_train, epochs=EPOCHS)
# Evaluate neural network performance
model.evaluate(x_test, y_test, verbose=2)
# Save model to file
if len(sys.argv) == 3:
filename = sys.argv[2]
model.save(filename)
print(f"Model saved to {filename}.")
def load_data(data_dir):
"""
Load image data from directory `data_dir`.
Assume `data_dir` has one directory named after each category, numbered
0 through NUM_CATEGORIES - 1. Inside each category directory will be some
number of image files.
Return tuple `(images, labels)`. `images` should be a list of all
of the images in the data directory, where each image is formatted as a
numpy ndarray with dimensions IMG_WIDTH x IMG_HEIGHT x 3. `labels` should
be a list of integer labels, representing the categories for each of the
corresponding `images`.
"""
images = []
labels = []
# for each category
for category_folder in range(0, NUM_CATEGORIES):
category_dir = os.path.join(data_dir,str(category_folder))
# loop through all images in the specific category directory
for image_file_name in os.listdir(category_dir):
image_file_path = os.path.join(category_dir,image_file_name)
if os.path.isfile(image_file_path):
img = cv2.imread(image_file_path, cv2.IMREAD_UNCHANGED)
resized_img = cv2.resize(img, (IMG_WIDTH, IMG_HEIGHT), interpolation = cv2.INTER_AREA)
images.append(resized_img)
labels.append(category_folder)
return (images, labels)
def get_model():
"""
Returns a compiled convolutional neural network model. Assume that the
`input_shape` of the first layer is `(IMG_WIDTH, IMG_HEIGHT, 3)`.
The output layer should have `NUM_CATEGORIES` units, one for each category.
"""
model = Sequential()
model.add(Conv2D(32, (3,3), activation='relu', input_shape=(IMG_WIDTH, IMG_HEIGHT, 3)))
model.add(MaxPooling2D((2,2)))
model.add(Conv2D(64, (3,3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(NUM_CATEGORIES, activation="softmax"))
model.summary()
model.compile(optimizer='adam',loss='categorical_crossentropy', metrics=['accuracy'])
return model
if __name__ == "__main__":
main()