forked from i-abr/HybridLearning
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathenjoy_mpc.py
152 lines (127 loc) · 5.05 KB
/
enjoy_mpc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import numpy as np
import random
import pickle
from datetime import datetime
import sys
import os
import yaml
# local imports
import envs
import gym
from gym import wrappers
from envs import Monitor
import torch
from sac_lib import NormalizedActions
from mpc_lib import ModelBasedDeterControl, PathIntegral
from model import ModelOptimizer, Model, SARSAReplayBuffer
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='HopperEnv')
parser.add_argument('--method', type=str, default='mpc_stoch')
parser.add_argument('--frame', type=int, default=-1)
parser.add_argument('--seed', type=int, default=13)
parser.add_argument('--done_util', dest='done_util', action='store_true')
parser.add_argument('--no_done_util', dest='done_util', action='store_false')
parser.set_defaults(done_util=False)
parser.add_argument('--log', dest='log', action='store_true')
parser.add_argument('--no-log', dest='log', action='store_false')
parser.set_defaults(log=False)
parser.add_argument('--render', dest='render', action='store_true')
parser.add_argument('--no_render', dest='render', action='store_false')
parser.set_defaults(render=True)
parser.add_argument('--record', dest='record', action='store_true')
parser.add_argument('--no_record', dest='record', action='store_false')
parser.set_defaults(record=False)
args = parser.parse_args()
import pybullet as pb
if __name__ == '__main__':
base_method = args.method[:3]
if args.method[4:] == 'deter':
config_path = './config/hlt_deter.yaml'
else:
config_path = './config/hlt_stoch.yaml'
with open(config_path, 'r') as f:
config_dict = yaml.safe_load(f)
config = config_dict['default']
if args.env in list(config_dict.keys()):
config.update(config_dict[args.env])
else:
raise ValueError('env not found config file')
env_name = args.env
try:
env = NormalizedActions(envs.env_list[env_name](render=args.render))
except TypeError as err:
print('no argument render, assuming env.render will just work')
env = NormalizedActions(envs.env_list[env_name]())
assert np.any(np.abs(env.action_space.low) <= 1.) and np.any(np.abs(env.action_space.high) <= 1.), 'Action space not normalizd'
if args.render:
try:
env.render('human') # needed for InvertedDoublePendulumBulletEnv
except:
print('render not needed')
if args.record:
if args.render:
raise ValueError('cannot record while rendering, valid options are --render --no_record OR --no_record --render')
video_path = './data/vid/mpc'
if os.path.exists(video_path) == False:
os.makedirs(video_path)
if args.done_util:
env = gym.wrappers.Monitor(env, video_path+'/{}-{}'.format(env_name, args.frame), force=True)
else:
env = Monitor(env, video_path+'/{}-{}'.format(env_name, args.frame), force=True)
env.reset()
# pb.configureDebugVisualizer(pb.STATE_LOGGING_VIDEO_MP4)
env.seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
action_dim = env.action_space.shape[0]
state_dim = env.observation_space.shape[0]
device ='cpu'
if torch.cuda.is_available():
device = 'cuda:0'
print('Using GPU Accel')
model = Model(state_dim, action_dim, def_layers=[200],AF=config['activation_fun']).to(device)
state_dict_path = './data/' + config['method'] + '/' + env_name + '/seed_{}/'.format(args.seed)
if args.frame == -1:
test_frame = 'final'
else:
test_frame = args.frame
model.load_state_dict(torch.load(state_dict_path+'model_{}.pt'.format(test_frame), map_location=device))
if args.method == 'mpc_stoch':
planner = PathIntegral(model,
samples=config['trajectory_samples'],
t_H=config['horizon'],
lam=config['lam'])
elif args.method == 'mpc_deter':
planner = ModelBasedDeterControl(model, T=config['horizon'])
else:
raise ValueError('method not found in config')
max_frames = config['max_frames']
max_steps = config['max_steps']
frame_skip = config['frame_skip']
state = env.reset()
episode_reward = 0
done = False
for step in range(max_steps):
action, _rho = planner(state)
for _ in range(frame_skip):
state, reward, done, _ = env.step(action.copy())
if args.done_util:
if done: break
episode_reward += reward
if args.render:
try:
env.render(mode="human")
# env.render(mode="rgb_array", width=320*2, height=240*2)
except TypeError as err:
env.render()
if args.done_util:
if done:
break
# print(episode_reward)
print(step)
env.close()